
Flexway O-Sort: Enclave-Friendly and Optimal Oblivious Sorting

Tianyao Gu
Carnegie Mellon University

Oblivious Labs Inc.

Yilei Wang
Alibaba Cloud

Afonso Tinoco
Carnegie Mellon University

Oblivious Labs Inc.

Bingnan Chen
HKUST

Ke Yi
HKUST

Elaine Shi
Carnegie Mellon University

Oblivious Labs Inc.

Abstract
Oblivious algorithms are being deployed at large scale in
real world to enable privacy-preserving applications such
as Signal’s private contact discovery. Oblivious sorting is a
fundamental building block in the design of oblivious algo-
rithms for numerous computation tasks. Unfortunately, there
is still a theory-practice gap for oblivious sort. The commonly
implemented bitonic sorting algorithm is not asymptotically
optimal, whereas known asymptotically optimal algorithms
suffer from large constants.

In this paper, we construct a new oblivious sorting algo-
rithm called flexway o-sort, which is asymptotically optimal,
concretely efficient, and suitable for implementation in hard-
ware enclaves such as Intel SGX. For moderately large inputs
of 12 GB, our flexway o-sort algorithm outperforms known
oblivious sorting algorithms by 1.32× to 28.8×when the data
fits within the hardware enclave, and by 4.1× to 208× when
the data does not fit within the hardware enclave. We also
implemented various applications of oblivious sorting, includ-
ing histogram, database join, and initialization of an ORAM
data structure. For these applications and data sets from 8GB
to 32GB, we achieve 1.44∼ 2.3× speedup over bitonic sort
when the data fits within the enclave, and 4.9∼ 5.5× speedup
when the data does not fit within the enclave.

1 Introduction

Oblivious algorithms [4, 6, 20, 21, 29, 32, 38, 44, 48] allow a
trusted client (e.g., a secure hardware enclave) to securely
outsource data to an untrusted storage (e.g., memory or disk),
such that as the client accesses the data, the addresses vis-
ited leak nothing about the secret data or query. Oblivious
algorithms have been deployed at a large scale in the real
world. For example, Signal, the encrypted messenger app,
relies on an oblivious key-value store to enable private con-
tact discovery [43]. Specifically, users send their encrypted
contacts to the Signal server running in a hardware enclave
(also called TEE, short for Trusted Execution Environment),

and the enclave securely fetches matching entries from an
oblivious key-value store, such that the access patterns do not
leak which users’ entries are matched.

Oblivious sorting [2, 4, 24, 31, 38] is known to be a par-
ticularly important building block in the design of oblivious
algorithms. Prior works [6,12,16,25,32,34,38,46] showed that
we can obliviously realize numerous computation tasks us-
ing oblivious sorting, such as histogram, page rank, database
joins and group-by queries, list ranking, tree computations
with Euler tour, tree contraction, graph algorithms such as
breadth-first search, connected components, and minimum
spanning tree/forest. More generally, any computational task
represented as a streaming Map-Reduce algorithm or in the
GraphLab programming model has an efficient oblivious im-
plementation using oblivious sorting [25, 32, 34]. Oblivious
sorting is also employed in Oblivious RAM (ORAM) [20] (a
generic compiler that compiles any program to an oblivious
counterpart), either for initialization, or as a load balancer for
parallelization [10, 14].

Although oblivious sorting has been explored in various
prior works, the practical state of the art is still unsatisfactory.
Bitonic sort [5], due to its simplicity, is a go-to scheme in
many implementations [3, 16, 33, 50]; however, its asymptot-
ical work O(N log2 N) is suboptimal, where N denotes the
input size. On the other hand, the well-known AKS sorting
network [2] and subsequent improvements [24, 36] achieve
an optimal O(N logN) work, but their construction suffer
from astronomically large constants. To bridge this significant
theory-practice gap, some recent works [4,23,38,42] proposed
oblivious sort constructions that achieve either O(N logN) or
O(N logNpoly log logN) work; however, their practical per-
formance are still far worse than bitonic sort.

In this paper, we explore the following important question:

Can we acheive concretely efficient, enclave-friendly
oblivious sorting with optimal O(N logN) work?

1.1 Our Results and Contributions

Our work takes a step forward in designing practically effi-
cient and asymptotically optimal oblivious sorting algorithms.
Moreover, we show that our oblivious sorting algorithm is
enclave-friendly from both an algorithmic perspective and
with empirical implementation and evaluation. We summarize
our contributions below.

Concretely efficient and optimal oblivious sorting. We
propose a new oblivious sorting algorithm called flexway
oblivious sort (or flexway o-sort for short) which achieves
(2.23+o(1))N logN work (measured in terms of the number
of compare-and-exchange operations).

Enclave-friendliness. Our flexway o-sort algorithm is opti-
mal in both of the following scenarios:

1. [EPC ≥ data]: when the input array fits within the en-
clave’s protected memory region (also called EPC, short
for Enclave Page Cache);

2. [EPC < data]: when the input array does not fit within
the EPC memory.

In the former setting, we want to optimize the computa-
tional overhead (also called work) of the algorithm. In the
latter setting, we also need to minimize the number of page
swaps. Specifically, when the enclave fetches (encrypted)
data from insecure memory or disk, it needs the operating
system’s help to perform a page swap. The page swap is a
heavy-weight operation since it involves context switching as
well as encrypting and decrypting the pages being swapped
in and out. Existing benchmarking results [46] showed that
the cost of a 4 KB page swap can be 66× more expensive
than moving a 4 KB page within the EPC memory. The vast
majority of oblivious algorithms [4, 20, 21, 28, 32, 44, 48]
in the literature focus on optimizing work but not the page
swap overhead. Earlier works [46] showed that if we directly
employ such an algorithm for hardware enclaves, then page
swaps will likely become the dominant overhead when the
data does not fit within the EPC memory. Also, it is known
that N

B log M
B

N
B number of page swaps is necessary for any

(even non-oblivious) sorting algorithm [1, 17].
Although recent enclave technologies such as SGX v2 and

TDX has supported larger secure memory [11, 15], external-
memory efficiency remains crucial for deploying oblivious
sorting for several reasons:

• Limited RAM Space: Although Intel’s server-grade pro-
cessors now support up to 1TB of EPC, many privacy-
preserving systems are also limited by the amount of phys-
ical memory. For a private blockchain, e.g., high RAM
requirements would significantly hinder participation.

• Resource Allocation: Sorting are often performed as main-
tenance tasks. In Signal’s usecase, e.g., if oblivious sorting
is applied to scale the database, it should not consume mem-
ory needed by the latency-sensitive query service.

• Enclave Creation Time: The creation time of an SGX en-
clave increases linearly with the EPC size; e.g., creating
a 64GB EPC enclave takes about 150 seconds in SGX
V2 [15]. Therefore, it is desirable to minimize the EPC size
for faster enclave creation.

• Communication in Distributed Clusters: when sorting is
performed on a distributed clusters, page swap overheads
translate into communication costs between nodes.

To the best of our knowledge, our flexway o-sort is the first
concretely efficient algorithm that achieves optimality in
both dimensions. Specifically, our flexway o-sort algorithm
achieves (2.23+o(1))N logN work and (3+o(1))N

B log M
B

N
B

number of page swaps where B denotes the page size, and M
denotes the size of the EPC memory.

Open-source implementation. We implemented our algo-
rithm and evaluated their concrete performance. The core
algorithm implementation (counting both oblivious sorting
algorithms) has 1,600 lines of code. Although our implemen-
tation uses Intel SGX, the algorithm design should work for
any common hardware enclave architecture. Our implementa-
tion has been made open source at https://zenodo.org/
records/14629454.

Evaluation. We show that our algorithm achieves signifi-
cant speedup over prior oblivious sorting algorithms for both
the [EPC≥ data] and [EPC < data] scenarios. For an array of
12 GB size, our speedup over prior algorithms is depicted in
the following table where for the [EPC < data] scenario, we
adopt an EPC size of 128 MB which is the same as SGXv1:

Scheme Our speedup
EPC ≥ data EPC < data

Randomized Shellsort 28.8× 208×
Bitonic (non-recursive impl.) 5.49× 38.4×

Bitonic (recursive impl.) 1.32× 4.10×
Multi-way bucket o-sort [38] 14.3× 12.4×

We also implemented various applications that rely on
oblivious sorting, including histogram, ORAM initialization,
and database join. We measure the end-to-end application per-
formance when using our flexway o-sort, and compare it with
(recursive) bitonic sort as a baseline. For these applications,
we achieve 1.44 ∼ 2.3× speedup when the data fits within
the enclave, and 4.9∼ 5.5× speedup when the data does not
fit within the enclave.

https://zenodo.org/records/14629454
https://zenodo.org/records/14629454

Additional results. As a byproduct, we also construct an
oblivious shuffler, which randomly permutes an input array
without leaking the permutation. Earlier works showed that
the oblivious shuffler is also a versatile primitive in oblivious
algorithms and ORAM schemes [27, 40, 41]. We give more
detailed evaluation results on oblivious shuffler in Section 5.4.

1.2 Technical Highlights
Starting point: multi-way bucket o-sort. Ramachandran
and Shi [38] constructed multi-way bucket o-sort, which is
asymptotically optimal in both work and page swaps, but
unfortunately suffers from astronomical constants. Their con-
struction reduces the task of oblivious sorting N elements to
an oblivious p-way MergeSplit, which can be viewed as a
special sorting algorithm where the keys come from a small
domain {0,1, . . . , p−1}. More precisely, a p-way MergeSplit
accomplishes the following:

• Input: p bins each of size Z. Each bin contains real ele-
ments each marked with a key from {0,1, . . . , p− 1} and
fillers. The frequency of each distinct key in the input is
bounded by Z.

• Output: Route the real elements to p destination bins de-
pending on their key, and each output bin is padded with
fillers to its capacity Z.

Ramachandran and Shi [38] showed that if we can achieve
oblivious MergeSplit in O(n logn) cost where n = pZ, p =
logN, and Z ∈ poly logN, then we can get oblivious sorting
optimal in both work and number of page swaps.

Our key idea. We observe that Ramachandran and Shi’s
framework still works if we use a slightly smaller p ∈
Θ(
√

logN). Our main contribution is to construct a concretely
efficient Θ(

√
logN)-way MergeSplit algorithm that achieves

O(m logm) work. To get this, we need some new algorith-
mic tricks. Notably, we show that if one can construct an
oblivious Euler tour algorithm for a graph with p vertices,
we can achieve p-way MergeSplit efficiently. To solve the
oblivious Euler tour problem efficiently, we applied a packing
trick. Specifically, as long as p∈O(

√
logN), we can pack the

adjacency matrix of the graph in O(1) memory words. This
allows us to obliviously access any entry in the adjacency
matrix in O(1) cost under a standard word-RAM model [19],
and hence obtain an Euler tour obliviously in linear time. We
refer the readers to Section 3.4 for the details of our novel
MergeSplit algorithm.

Other constant-factor optimizations. Simply plugging
in our new MergeSplit into the multi-way bucket o-sort
framework allows us to significantly improve the concrete
performance relative to the original multi-way bucket o-
sort [38]; however, it is not enough for achieving the tight

constants claimed earlier. To get the promised result with
(2.23 + o(1))N logN work and (3 + o(1))N

B log M
B

N
B page

swaps, we introduce various additional optimizations.
Notably, while previous works use a uniform number of

ways throughout the butterfly, we use a flexway butterfly con-
struction that allows different number of ways in different
layers (hence the name flexway o-sort). This approach en-
sures that the algorithm can adapt to all input sizes with only
(1+o(1))× worst-case overhead. While the original butterfly
network construction of Ramachandran and Shi [38] requires
out-of-place data movements, we adopt an in-place variant
of the butterfly network instead. Furthermore, we avoid the
matrix transposition operations needed in the original multi-
way bucket o-sort [38] through a careful choice of parameters.
We describe various additional optimizations in subsequent
technical sections as well as the appendices.

2 Preliminaries

2.1 Threat Model

We assume that the server uses secure hardware enclaves, such
as Intel SGX, to ensure computational integrity. While we use
Intel SGX as a test platform, our algorithmic constructions
are compatible with various hardware enclave technologies.
In this paper, we assume the hardware enclave itself is secure,
as explored in complementary research on designing provably
secure trusted hardware [18, 45, 49].

Due to the limited capacity of an enclave’s secure memory,
a page swap mechanism is required to manage encrypted
pages between external storage and internal memory. Even
with sufficient secure memory, a malicious operating system
could still revoke access rights to an enclave page, causing a
page fault [8]. During page swaps, the OS could observe page-
level access patterns and tamper with the pages. Additionally,
the OS might monitor fine-grained memory accesses within
the enclave through cache-timing attacks [7,39]. Therefore,
our algorithm must be fully oblivious [40] (also referred to as
doubly oblivious [33]), ensuring that no secret information is
leaked through page-level or EPC memory access patterns.

2.2 Background on Bucket Oblivious Sort

Our flexway o-sort algorithm builds on the bucket o-sort
framework proposed by Asharov et al. [4], and a multi-way
variant introduced by Ramachandran and Shi [38].

The “oblivious shuffle + non-oblivious sort” framework.
We depict the blueprint of the bucket oblivious sort algo-
rithm [4] in Figure 1. The algorithm first oblivious shuffle (or
o-shuffle for short) the input array, i.e., randomly permuting
the input array without leaking the permutation, and then em-
ploy a comparison-based, non-oblivious sorting algorithm on

Table 1: Comparison with sorting algorithms from prior works. The bounds assume sufficiently large N and adopt the
standard tall cache assumption: B≥ log2 N and M ≥ B2. For the multi-way bucket o-sort [38], CAKS and CSPMS denote the large
constants associated with the AKS sorting network [2] and the SPMS sorting algorithm [13]. For all the algorithms listed in the
table, the work is dominated by the element-wise exchanges. A page read plus a page write is counted as one page swap.

Algorithm Work (# Exchanges) Page Swaps Notes

Theoretically optimal [1, 17] Ω(N logN) Ω(N
B log M

B

N
B)

Prior works

Bitonic (non-recursive) [5] (1
4 +o(1))N log2 N (1

2 +o(1))N
B log2 N

Bitonic (recursive) [5, 16] (1
4 +o(1))N log2 N (1

2 +o(1))N
B log2 N

M

Randomized Shell Sort† [23] 24N logN (24+o(1))N log N
M // non-negl. failure prob.

Bucket o-sort [4] (1+o(1))N logN log2 logN (4+o(1))N
B log N

B

Multi-way bucket o-sort [38] CAKS ·N logN CSPMS · N
B log M

B

N
B // asymptotically opt.

Our result

Flexway o-sort (2.23+o(1))N logN (3+o(1))N
B log M

B

N
B // asymptotically opt.

Oblivious
 Random

Binning

Shuffle each
bin & extract
real elements

Non-oblivious
Comparison-
based Sorting

out

Oblivious Shuffling

*** ***

0** 1**

00* 01* 10* 11*

*** ***

0** 1**

Route in a Butterfly Network

MergeSplit

in

Figure 1: Procedure of Bucket Oblivious Sort.

the shuffled array. Asharov et al. [4] proved the obliviousness
of this paradigm.

Oblivious random binning: core primitive in o-shuffle. A
core primitive for realizing an o-shuffle is called an oblivi-
ous random binning, which addresses the following problem:
given an input array of size N, we want to obliviously place
each element randomly into one of (1+ ε)N/Z bins, where
Z = poly logN is the size of each bin and ε > 0 is a con-
stant called the slack factor. For simplicity, prior works [4,38]
set ε = 1. Asharov et al. [4] showed that we can realize an
o-shuffle in the following way.

O-shuffle:

1. Run random binning on the input array.

2. Obliviously shuffle the elements within each bin.

3. Extract all real elements and drop the fillers.

Note that Step 3 leaks how many real elements fall within
each bin. Asharov et al. [4] showed that this leakage is safe
as the number of real elements in each bin can be simulated.

Realizing oblivious random binning. We now describe
the oblivious random binning algorithm by Asharov et al. [4].
Their construction uses a butterfly network with (logNBin)+
1 layers, where each layer has NBin = (1+ ε)N/Z bins of
capacity Z. The algorithm works as follows:

Oblivious random binning:

• Initially, a random label of logNBin bits is assigned
to each input element. The label denotes which final-
layer bin the element goes to.

• Place exactly Z/(1+ ε) input elements in each bin at
layer 0, and pad the bins to a full capacity with fillers.

• All elements are routed to their destination bins in
the final layer along the butterfly network, through a
sequence of MergeSplit operations as defined below.
When routing from layer ℓ to layer ℓ+1, each element
uses the ℓ-th bit of its label to decide the direction to
go for the MergeSplit.

*** ***

0** 1**

00* 01* 10* 11*

000 001 010 011 100 101 110 111

*** ***

0** 1**

*** *** *** ***

00* 01* 10* 11*

0** 1** 0** 1**

(a) 2-way butterfly network for NBin= 8. Uses binary labels.

** **

0* 1*

**

2*

** **

0* 1*

**

2*

** **

0* 1*

**

2*

00 01 02 10 11 12 20 21 22

(b) 3-way butterfly network for NBin= 9. Uses ternary labels.

**** ****

0
mod 3

1
mod 3

2
mod 3

0
mod 18

1
mod 18

2
mod 18

3
mod 18

4
mod 18

5
mod 18

6
mod 18

7
mod 18

8
mod 18

9
mod 18

10
mod 18

11
mod 18

12
mod 18

13
mod 18

14
mod 18

15
mod 18

16
mod 18

17
mod 18

**** ****

0
mod 3

1
mod 3

2
mod 3

**** ****

0
mod 3

1
mod 3

2
mod 3

**** ****

0
mod 3

1
mod 3

2
mod 3

0
mod 6

1
mod 6

2
mod 6

3
mod 6

4
mod 6

5
mod 6

0
mod 6

1
mod 6

2
mod 6

3
mod 6

4
mod 6

5
mod 6

**** ****

0
mod 3

1
mod 3

2
mod 3

**** ****

0
mod 3

1
mod 3

2
mod 3

0
mod 6

1
mod 6

2
mod 6

3
mod 6

4
mod 6

5
mod 6

k
mod p

Bin containing
elements with

label ≡ k mod p

2-way
MergeSplit

3-way
MergeSplit

(c) A 3×2×3 flexway butterfly network for NBin= 18. The MergeSplit function routes elements based on the modulo of their labels.

Figure 2: Comparison of (a) the two-way butterfly network from [4], (b) the multi-way variant from [38], and (c) the flex-
way variant proposed in this work. The flex-way butterfly network introduces fewer restrictions on the number of bins and is
restructured to enable in-place MergeSplit (see section 4.2 for details).

In expectation, the number of real elements that land in
each bin is exactly Z/(1+ ε). Earlier work [4] proved that
if Z ∈ poly logN, the probability that any bin overflows is
negligible, so a simulator assuming no overflow produces
access patterns statistically indistinguishable from real-world
execution.

Core subroutine MergeSplit. In the butterfly network, a
pair of bins at level ℓ route to a pair of bins at level ℓ+1 —
this is accomplished through a MergeSplit operation.

The MergeSplit operation takes two input arrays (i.e., bins)
each of size Z, where each array contains real elements tagged
with a key 0 or 1, as well as some fillers. MergeSplit then
routes each real element to either the left or the right output
bin based on its key, and each output bin is padded with fillers
to its capacity Z. For obliviousness, the algorithm’s access
patterns should not leak where each element is going.

A multi-way variant. Ramachandran and Shi [38] intro-
duced a p-way variant of the bucket o-sort algorithm, reduc-
ing the depth of the butterfly network from O(log(N/Z)) to

O(logp(N/Z)). Each bin is connected to p bins in the next
layer, and the MergeSplit operation is extended to handle p
input and p output bins. Specifically, the MergeSplit routes
each element at level ℓ to one of the p output bins at level
ℓ+1 based on the ℓ-th digit of its label in base-p. By setting
p = logN, Ramachandran and Shi [38] gave a theoretical con-
struction of oblivious sorting with optimal work. Figure 2b
shows an example of p-way butterfly network where p = 3.

Key challenge: an efficient oblivious MergeSplit? The
reason why the bucket o-sort [4] and the subsequent mul-
tiway variant [38] are inefficient is because they lack an effi-
cient MergeSplit algorithm. Specifically, bucket o-sort uses
bitonic sort to realize the MergeSplit. As bitonic sort requires
O(n log2 n) work on an input size n, the resulting oblivious
sorting suffer from O(N logN(log logN)2) work. While we
can replace bitonic sort with a more efficient compaction al-
gorithm with O(n logn) work [22, 40], the resulting oblivious
sorting still requires O(N logN log logN) work.

By contrast, the multiway bucket o-sort algorithm [38] uses
a logN-way butterfly network, and applies AKS sorting [2]

to realize the logN-way MergeSplit with O(n logn) work.
This approach achieves asymptotic optimality for oblivious
sorting (i.e. O(N logN) work), but suffers from astronomical
constants due to the expander graphs in AKS.

It is also possible to use linear-work oblivious com-
paction [37] to realize the MergeSplit in the original (2-way)
bucket o-sort [4]. This also achieves optimality in work but
again known linear-work oblivious compaction [37] relies on
expander graphs and suffers from enormous constants.

3 A New Multi-Way MergeSplit

3.1 Overview

Overview of our flexway o-sort. Our new flexway o-sort
algorithm follows the same overall framework as multi-way
bucket o-sort [4, 38]. However, unlike earlier works [38] that
use either a 2-way or logN-way butterfly network, we set
the number of ways to be p ∈Θ(

√
logN). Both choices p =

logN and p ∈ Θ(
√

logN) results in a butterfly network of
Θ(logp N) = Θ(logN/ log logN) layers.

The reason why we choose p ∈ Θ(
√

logN) (as opposed
to Θ(logN) like in earlier work [38]) is because it allows
us to pack the adjacency matrix of a graph with p vertices
into O(1) memory words. This packing trick is later used to
implement a more efficient p-way MergeSplit algorithm.

Overview of our p-way MergeSplit. As mentioned, Ra-
machandran and Shi’s multi-way bucket o-sort [38] is ineffi-
cient because they lacked an efficient multi-way MergeSplit.
One of our main contributions is to devise a practical obliv-
ious p-way MergeSplit algorithm that achieves O(n logn)
work with input size n = pZ, where p ∈Θ(

√
logN) and Z ∈

2O(
√

logN). As shown in Figure 3, our novel p-way MergeSplit
algorithm works as follows. Suppose we have an input array
consisting of real elements and fillers, and each real element
is marked with a key from {0,1, . . . , p−1}, denoting which
way it wants to go. Now, perform the following steps:

1. Preprocess: We first preprocess the input array and tag
each filler with a key from {0,1, . . . , p−1}, such that at
the end, there is an equal number of elements with each
key k ∈ {0,1, . . . , p−1}.

2. Interleave: We run a recursive algorithm called
Interleave to rearrange the input array such that in
the output array, the elements have interleaving keys
0,1,2, . . . , p−1,0,1,2, . . . , p−1, . . ., and so on.

3. Transpose: Finally, rearrange elements into output bins
by transposing the result of the previous step , so that the
keys have the form 0,0, . . . ,0︸ ︷︷ ︸

Z

,1,1, . . . ,1︸ ︷︷ ︸
Z

, . . . , p, . . . , p︸ ︷︷ ︸
Z

.

In the remainder of the section, we describe how each step
is performed. Specifically, the core of our new multi-way
MergeSplit is the Interleave subroutine, a recursive algorithm
that calls another building block called Balance. The Balance
subroutine is also the technical highlight of our algorithm,
since it expresses the problem of rearranging an input array
in a specific way as an Euler tour problem for a small graph
with p ∈ O(

√
logN) vertices. By leveraging the fact that the

adjacency matrix of this graph can be packed in O(1) memory
words, we can make the algorithm highly efficient.

3.2 Balance
As mentioned, our p-way MergeSplit algorithm relies on a
central building block called Balance.

Syntax. The Balance algorithm takes as input an array
A containing n elements, each marked with a key from
{0,1, . . . , p−1}. It is promised that each distinct key appears
an even number of times. The goal of Balance is to rearrange
the array A such that

• each key appears the same number of times in the left and
right half of the array; and

• the last element of A is the same as the input array.

The requirement of preserving the last element of the array
is used in later building blocks when the array length is not a
power of 2 — see the Permute algorithm in Section A.

Constraints. p ∈ O(
√

logN).

Intuition: translate Balance into an Euler-tour on the ex-
change graph. First, we pair up elements in the left and
right halves of the array A, specifically A[i] and A[n/2+ i] for
each i ∈ {0, . . . ,n/2− 1}. Our goal is to exchange some of
these pairs to make the array balanced.

We can equivalently think of this as a graph problem. We
create a multi-graph G (called the exchange graph) with p
vertices, one for each key in {0,1, . . . , p−1}. If an element
with the key u is paired with an element with the key v, we
draw an edge between the vertices u and v. Observe that the
resulting multi-graph may have parallel edges and self-loops.
Further, since each key appears an even number of times in the
input array, every vertex in G has an even number of incident
edges (each self-loop counts twice).

Now, our goal is to orient the edges (i.e., assign a direction
to each edge), such that every vertex has the same in-degree
and out-degree. In particular, if there is a directed edge (u,v),
it means that during one encounter with the pair u and v, we
should rearrange them such that u appears on the left and v
appears on the right. Clearly, if every vertex has the same
in-degree and out-degree, it means that the corresponding key
appears the same number of times in the left and right halves.

Figure 3: Left: An illustration of our MergeSplit construction. Input elements are marked with keys 0, 1, 2, and we use ⊥ to
denote filler elements. Right: The Interleave subroutine, which in turn relies on the Balance subroutine as a building block.

To achieve this, we find an Euler tour in the exchange graph
G and then orient the edges accordingly. To make the algo-
rithm oblivious and efficient, we preprocess G to compress it
into a simple graph. In particular, the preprocessing removes
parallel edges and self-loops as they occur (see lines 4-6 of
Algorithm 1). More specifically, if there are r edges between
two vertices u and v, we do the following preprocessing:

• Case 1: r is even. In this case, we can assign r/2 of these
edges one direction and the remaining r/2 the opposite
direction. We can prune all these r edges, i.e. there is no
edge left between u and v.

• Case 2: r is odd. In this case, we can assign (r− 1)/2
of these edges one direction, and (r− 1)/2 of them the
opposite direction. We can prune these r− 1 edges, such
that there is only one edge left between u and v whose
direction remains to be assigned.

With the above pre-processing, the pruned graph G always
has 0 or 1 edge remaining between every pair of vertices.
Therefore, the total number of edges is at most p2 ∈O(logN),
and the adjacency matrix hence fits in O(1) memory words.
Moreover, every time we prune a pair of parallel edges or a
self-loop, we reduce the degree of the endpoint(s) by 2, so all
vertices still have even degree after the preprocessing. At this
moment, we find an Euler tour to orient the remaining edges
(see lines 7-12 of Algorithm 1).

Oblivious Euler-tour algorithm for small graphs. With-
out the obliviousness requirement, there is a standard Euler-
tour algorithm with O(p2) overhead where p2 is the maximum
number of edges for a graph with p vertices. Unfortunately,
the standard Euler-tour algorithm is not oblivious. Our key in-
sight is that we can have an oblivious version of the standard
Euler-tour algorithm, as long as the adjacency matrix of the

graph can fit in O(1) memory words, that is, the number of ver-
tices p ∈ O(

√
logN). In this way, we can obliviously access

each entry of the adjacency matrix by invoking O(1) word-
level operations supported by the RAM. Further, to ensure
obliviousness, we also need to make sure that the Euler-tour
algorithm does not abort prematurely which may leak the
number of edges in the graph. In our oblivious implementa-
tion, we make sure that the loop always iterates for a fixed
number of iterations (see line 8 of Algorithm 1).

Detailed algorithm description. We give a full description
of our Balance algorithm in Algorithm 1. Basically,

• Construct pre-processed graph. Lines 4-6 construct the sim-
ple graph G where parallel edges and self-loops have been
pruned. This part requires O(n) numerical computation and
no exchange.

• Euler tour. Lines 7-12 finds an Euler tour using depth-first
search (DFS), and the orientation of the edges are stored in
another directed simple graph D whose adjacency matrix
can also be packed into O(1) words. Starting from vertex
0, we traverse G through unvisited edges until reaching a
dead end. The unvisited edge can be indexed using the least
significant bit (LSB) operation. As each vertex has an even
degree, we are guaranteed to return to the starting vertex.
We then move to the next vertex and repeat the process
until all the edges are visited. To make the search oblivious,
we always pad the number of iterations to the worst-case,
which equals the number of vertices plus the number of
edges. In other words, we perform fake operations after
all vertices have been visited. This part requires O(p +
min(p2,n)) = O(min(logN,n)) numerical computation as
long as p ∈ O(

√
logN), and no exchange.

Algorithm 1 Balance(A, p)

Input: Input array A contains n elements each marked with a
key in {0,1, ..., p−1}. Let ki denote the key of the i-th
element. Each key occurs even times.
Output: A is rearranged such that each key appears the same
number of times in the left and the right half. Also, the last
element of A should not change.
// All if conditionals use fake accesses to ensure that the access
patterns are identical for both branches.

1: n← |A|, m← n/2
2: if n = 2 then return
3: Construct a simple graph G and directed graph D, both

with p vertices numbered from 0 to p− 1 and no edge
initially. Represent each graph with an adjacency matrix
and pack it in a word.

4: for i← 0 to m−1 do
5: if (ki,ki+m) ∈ G then prune (ki,ki+m) of G
6: else if ki ̸= ki+m then add (ki,ki+m) to G.

7: Start the walk at vertex t← 0.
8: for p+min(m, 1

2 p(p−1)) iterations do
9: if ∃ v such that (t,v) ∈ G then

10: Add (t,v) to D and delete it from G.
11: t← v
12: else t←min(t +1, p−1)

13: For all 0 ≤ u < v < p, add directed edge (u,v) to D if
there is no edge between u and v in D.

14: if (km−1,kn−1) /∈ D then reverse all edges in D.

15: Reverse the edge between km−1 and kn−1 in D.
16: for i← 0 to m−2 do
17: Exchange A[i] and A[i+m] if (ki,ki+m) /∈ D.
18: Reverse the edge between ki and ki+m in D.

• Conditional exchange of elements. Lines 13-18 exchange
the element pairs based on the orientation of their corre-
sponding edge in D. Some pairs may not have any corre-
sponding edge in D because they appear even number of
times and all the edges got pruned. Therefore, we add an
edge in D between any pair that is not directly connected
(the direction can be arbitrary, see line 13). Every time a
conditional exchange occurs between two elements with
keys u and v, we reverse the edge in D between vertices u
and v in D (see line 18), so that next time u and v will be
arranged in the opposite order. This effectively guarantees
that the pruned edges between u and v are assigned to either
direction the same number of times. This part takes O(n)
numerical computation and n/2−1 exchanges.

As an optimization, we can avoid exchanging the last ele-

ment pair by conditionally negate the adjacency matrix and
use a reversed Euler tour (see line 14-15 of Algorithm 1).

Lemma 3.1 (Computational overhead of Balance). Algo-
rithm 1 incurs O(n) numerical computation and n/2−1 ex-
changes.

Lemma 3.2 (Obliviousness of Algorithm 1). The memory
access patterns of Algorithm 1 are deterministic and depend
only on the length of the input array and the parameter p but
not the contents of the array.

Proof. As mentioned, the adjacency matrices of G and D
can each be packed into O(1) words. In this way, accessing
an entry in the adjacency matrices requires O(1) word-level
operations. Further, all if conditionals use fake accesses to
make the access patterns for both branches the same. Hence,
lines 4-6 where we construct the pre-processed graph G have
fixed access patterns. Lines 7-12 where we find the Euler tour
iterate for a fixed number of times and the access patterns
within each iteration of the loop are fixed. Similarly, Lines
13-18 where we perform the actual conditional exchanges
also enjoy fixed access patterns.

3.3 Interleave

Syntax. Interleave receives an input array containing n =
pZ elements marked with keys in {0,1, . . . , p−1}, each key
appearing exactly Z times. The output is a rearranged array
such that the i-th element has key i mod p. For p = 3 and
Z = 4 as an example, the output elements should have the key
sequence 0,1,2,0,1,2,0,1,2,0,1,2.

Constraints. Z is a power of two, p ∈ O(
√

logN).

Intuition. The basic idea behind Interleave is to recursively
balance the number of each key on the left and right half of
the array. At the base case, each key appears excatly once,
and we use a permutation network to arrange them in order.

Detailed algorithm. Algorithm 2 shows the Interleave pro-
cedure. At line 3 we call Balance so that each key appears Z/2
times on the left and Z/2 times on the right. As Z is a power
of two, we can call Interleave on both halves recursively.

For the base case, there are p elements with distinct keys
in {0,1, ..., p−1}. In Section A, we define the Permute algo-
rithm to sort these elements obliviously in O(p log p) time for
p ∈ O(

√
logN).

Lemma 3.3 (Computation cost of Interleave). Algorithm 2
incurs O(n logn) numerical computation and no more than
1
2 n(logn+ log p) exchanges.

(a) Interleave network for p = 3 and Z = 4

(b) Level 1 exchange graph. (c) Euler tour.

Figure 4: An example of the Interleave algorithm. The algo-
rithm recursively balances the input and runs permutation at
the base case. In 4a, the dotted lines mean the two elements
will not be swapped. In 4b and 4c, solid and dashed edges
jointly denote the exchange graph G before pre-processing,
and the solid edges denote the graph G after pre-processing.

Lemma 3.4 (Obliviousness of Algorithm 2). The memory
access patterns of Algorithm 2 are deterministic and depend
only on the length of the input array and the parameter p but
not the contents of the array.

We defer the proof of Lemma 3.4 to Section B.2.

3.4 Multi-way MergeSplit

Syntax. A p-way MergeSplit takes in p input bins each
containing Z elements. Each element is either a real or a filler
element. Every real element has a key in 0,1, ..., p−1, and
a payload string. The goal of the MergeSplit function is to
redistribute the real elements so that all elements with key
j appear in the j-th output bin. All output bins are padded
with fillers to a maximum capacity of Z. If any bin overflows
(i.e., if any key appears more than Z times in the input), the
algorithm simply aborts. For the special case p = 2, this is
exactly the MergeSplit primitive used in the original bucket
o-sort by Asharov et al. [4].

Algorithm 2 Interleave(A, p)

Input: The input array A contains n = pZ elements each
marked with a key from {0,1, . . . , p−1}. Each key appears
exactly Z times and Z is a power of two. We require
p ∈ O(

√
logN).

Output: A is rearranged so that the i-th element has key i
mod p.

1: n← |A|
2: if n = p then: PERMUTE(A); return
3: BALANCE(A, p)
4: INTERLEAVE(A[0 : n

2 −1], p)
5: INTERLEAVE(A[n

2 : n−1], p)

Constraints. p ∈ O(
√

logN) and Z ∈ 2O(
√

logN).1 We re-
quire the bin size Z to be a power of 2, but do not require
p to be a power of 2. This weakened precondition provides
flexibility for constructing the butterfly network in Section 4.

Obliviousness requirement. For obliviousness, we require
that for any input where each key does not appear more than
Z times, the memory access patterns of the algorithm are
deterministic and the same.

Intuition. Our new MergeSplit algorithm has a preprocess-
ing step to obliviously mark every filler element also with a
key so that each distinct key appears exactly Z times. Next,
we call Interleave to rearrange elements into chunks of size
p where each chunk contains elements with keys ordered
from 0 to p−1. Finally, we create the bins by extracting the
corresponding elements from each chunk.

Detailed algorithm. Algorithm 3 shows the MergeSplit
procedure. The preprocessing involves two linear passes over
the keys. The first pass counts the occurrences of each distinct
key. If any key appears more than Z times, we detect a bin
overflow and abort. The second pass marks the fillers and
ensures that each key appears Z times. We make both passes
oblivious and achieve linear runtime using a packing trick
similar to that in algorithm 1. Note that representing all p
counters requires p · logZ ∈O(logN) bits. Using bitwise CPU
instructions such as shifting and bitwise AND, we can pack
all the counters into O(1) memory words and update a counter
obliviously in constant time.

Lemma 3.5 (Computation cost of MergeSplit). Algorithm 3
incurs O(pZ log(pZ)) numerical computation and no more
than pZ(1

2 logZ + log p+1) exchanges.
1Our flexway butterfly sorting network later chooses Z = logc N for a

constant c > 1 to get both negligible in N failure probability and optimal
computational overhead.

Algorithm 3 p-way MergeSplit for p ∈ O(
√

logN)

Input: A := A0||A1|| . . . ||Ap−1 where p ∈ O(
√

logN). For
j ∈ {0, . . . , p−1}, each bin A j has size Z where Z is a power
of 2 and Z ∈ 2O(

√
logN). Each A j contains real and filler

elements; and each real element has a key from
{0, . . . , p−1}.
Output: p bins denoted A′ = A′0||A′1|| . . .A′p−1. We want to
route all real elements in the input with key k to A′k, padded
with fillers to a size of Z. Output Abort if any bin overflows.

1: for k← 0 to p−1 do // Preprocess
2: Ck← Count of real elements marked with key k.
3: Abort if any Ck > Z.
4: Mark the next Z−Ck fillers in A with key k.

5: Interleave(A, p)
6: for k← 0 to p−1 do // Transpose
7: A′k← [A[k],A[p+ k], ...,A[p(Z−1)+ k]]

⋆ The preprocessing can be implemented obliviously with
O(1) linear scans by packing the counts in O(1) words.

Lemma 3.6 (Obliviousness of Algorithm 3). As long as the
input promises that each key appears no more than Z times,
then the memory access patterns of Algorithm 3 are determin-
istic and depend only on the length of the input array and the
parameter p but not the contents of the array.

We defer the proof of Lemma 3.6 to Section B.2.

4 Flexway O-Sort

4.1 Basic Algorithm and External-Memory Ef-
ficiency

As mentioned, our basic algorithm is the following: we use the
same framework of multi-way bucket o-sort [38] with the fol-
lowing changes: 1) we set the number of ways p∈Θ(

√
logN),

and 2) we adopt a new p-way MergeSplit algorithm described
in Section 3.4.

This gives us an oblivious random binning algorithm, from
which we can easily construct an oblivious random permuta-
tion. To get oblivious sorting, we need to run a non-oblivious
comparison-based sort after the oblivious random permuta-
tion. The work of Ramachandran and Shi [38] adopts the
SPMS algorithm which is theoretically optimal in terms of
both work and number of page swaps, but concretely inef-
ficient. In our work, we use the external merge-sort algo-
rithm [30] to realize the non-oblivious sort.

External-memory efficiency. The above basic algorithm
achieves O(N logN) work. At this moment, we explain why

this algorithm can achieve an optimal number of page swaps
as observed by Ramachandran and Shi [38]. The reason is
that the butterfly network structure enjoys good locality —
see Figure 5 (left). Instead of working on the MergeSplit
operations layer by layer, we can work on them k layers at
a time: each time we fetch a batch of bins into the enclave
and perform k layers of MergeSplit operations among those
bins. Then, we perform a matrix transposition operation to
bring together bins that will be grouped in the next k layer’s
MergeSplit operations. In Figure 5 (left), we show a 2-way
butterfly network (rather than multi-way) for clarity, and we
use both k = 1 and k = 2 due to imperfect rounding. Stan-
dard analysis shows that if the batch size is Θ(M), the above
approach achieves O(N/B · logM/B(N/B)) number of page
swaps [38], which is optimal even for non-oblivious sort [1].

4.2 Other Optimizations
So far, we have significantly improved the constants relative
to Ramachandran and Shi [38] while maintaining the asymp-
totical optimality. However, to achieve the constants claimed
in Table 1, we need several additional tricks.

New rounding technique and flexible ways. Prior
works [4,38] insist both the bin size Z and the number of ways
each MergeSplit performs to be powers of two. Consequently,
they have to round the number of elements in the butterfly net-
work to the next power of two, leading to a potential 2× over-
head. We instead do not impose the power-of-two constraint
on the number of ways, and moreover, allow a non-uniform
number of ways at different levels of the butterfly network.
More concretely, we have the following problem. Recall that
initially, the number of bins per level is NBin := (1+ ε)N/Z.
Our goal is to round NBin up to some integer that can be
expressed as as NBin∗ := p1× p2× . . .× pL, and moreover:

1. For every ℓ ∈ [L], ⌊
√

logN⌋/2≤ pℓ ≤ ⌊
√

logN⌋;
2. NBin∗ = (1+o(1))NBin.

The first condition ensures that the number of ways is not
too small and hence the total work is O(N logN). The second
condition makes sure that the rounding introduces only (1+
o(1))× overhead. An example of such a flexway butterfly
network is shown in Figure 2c. In Section B.1, we show how
to find a solution for any NBin.

Our flexway butterfly also requires a corresponding modifi-
cation in our external-memory implementation. Specifically,
the number of layers k we fetch in a batch will also be non-
uniform at different depths in the butterfly. At any point of
time, we always pick largest k such that the batch size can
maximally utilize the enclave’s EPC memory (of size B).

In-place butterfly and saving matrix transposition. As
shown in Figure 5 (left), the original multi-way bucket o-
sort [38] suffers from several concrete inefficiencies. First,

**** **** **** **** **** **** **** ****

0
mod 2

0
mod 2

0
mod 2

0
mod 2

1
mod 2

1
mod 2

1
mod 2

1
mod 2

0
mod 2

1
mod 2

0
mod 2

1
mod 2

0
mod 2

0
mod 2

0
mod 2

0
mod 2

1
mod 2

1
mod 2

1
mod 2

1
mod 2

0
mod 4

2
mod 4

0
mod 4

2
mod 4

1
mod 4

3
mod 4

1
mod 4

3
mod 4

0
mod 2

1
mod 2

0
mod 2

1
mod 2

0
mod 8

4
mod 8

2
mod 8

6
mod 8

1
mod 8

5
mod 8

3
mod 8

7
mod 8

0
mod 8

4
mod 8

2
mod 8

6
mod 8

1
mod 8

5
mod 8

3
mod 8

7
mod 8

0
mod 2

0
mod 2

0
mod 2

0
mod 2

1
mod 2

1
mod 2

1
mod 2

1
mod 2

0
mod 4

2
mod 4

0
mod 4

2
mod 4

1
mod 4

3
mod 4

1
mod 4

3
mod 4

0
mod 8

1
mod 8

2
mod 8

3
mod 8

4
mod 8

5
mod 8

6
mod 8

7
mod 8

Out-of-place
MergeSplit

Fetch each batch
of bins directly

into enclave

In-place
MergeSplit

Prior work Our work

Matrix Transposition

**** **** **** **** **** **** **** ****

0
mod 2

**** ****

1
mod 2

0
mod 2

**** ****

1
mod 2

**** ****

0
mod 2

1
mod 2

0
mod 2

1
mod 2

0
mod 2

1
mod 2

**** ****

0
mod 2

1
mod 2

0
mod 2

1
mod 2

0
mod 2

1
mod 2

0
mod 8

2
mod 8

4
mod 8

6
mod 8

1
mod 8

3
mod 8

5
mod 8

7
mod 8

0
mod 2

**** ****

1
mod 2

0
mod 2

**** ****

1
mod 2

**** ****

0
mod 2

1
mod 2

**** ****

0
mod 2

1
mod 2

Fetch bins into enclave batch by batch Fetch bins into enclave batch by batch

External
Memory

Enclave

External
Memory

Enclave

External
Memory

External
Memory

Figure 5: We use an in-place variant of the butterfly, and we get rid of the matrix transposition.

Table 2: Optimal concrete parameters generated by our solver for a security failure probability of 2−60 or smaller. The parameters
are optimized for 128-byte elements, 128 MB EPC, and 4 KB pages. To speed up the Euler tour search in the Balance algorithm,
the solver sets the number of ways p≤ 8 so that each adjacency matrix fit within a single 64-bit word. For larger elements, the
number of ways may increase as the element-wise exchanges dominate the computation.

N Z Butterfly Network Structure Element-wise Exchanges Page Swaps

106 4096 (8×6)×6 3.95N logN 2.19 N
B log M

B

N
B

107 8192 (7×7)× (4×7) 4.05N logN 1.75 N
B log M

B

N
B

108 4096 (5×6×6)× (4×5×8) 4.01N logN 1.52 N
B log M

B

N
B

109 16384 (5×8)× (5×8)× (6×7) 4.14N logN 1.93 N
B log M

B

N
B

1010 4096 (2×8×8)× (5×6×6)× (2×8×8) 4.13N logN 1.82 N
B log M

B

N
B

MergeSplit operations are performed not in-place, i.e., the
outputs cannot be written to the input bins. This requires extra
working buffer in the enclave’s EPC memory, and thus reduces
the effective M parameter. Second, in between every k layers
of MergeSplit operations, the original multi-way bucket o-
sort relies on a matrix transposition algorithm to rearrange
bins, such that bins that are grouped in the next k layers of
MergeSplit become close together. This matrix transposition
increases the concrete overhead.

To address the these overheads, our new algorithm shown
in Figure 5 (right) introduces the following optimizations:

1. Avoid matrix transposition. We set the bin size to be at
least a page size, that is, 4 KB. In this way, we can skip
the matrix transpose and directly fetch the relevant bins
from discontiguous memory locations into the enclave.

2. In-place operations. By indexing the buckets in a reverse
lexicographical order, our butterfly network supports in-
place reads and writes both within the enclave and for
accesses to external memory.

First, within the enclave, whenever a MergeSplit oper-
ates on a set of bins, we write the outputs to the same
set of bins. Second, when the enclave fetches a set of
bins from the external memory and performs a batch of
MergeSplit operations, the output bins are written back
to the same locations in external memory.

The in-place optimization improves the memory utiliza-
tion by 2× and hence reduces the page swap overhead.

Solver for optimal concrete parameters. Given the en-
clave EPC memory size M, the page size B, the input size N,
and the desired security parameter, we need to choose sev-
eral internal parameters, including the bucket size, number
of buckets per layer, batch size, and the number of ways at
each level of the butterfly network. We implemented a solver
to search for the parameters that minimizes the overhead of
rounding, and maximally balances the computation and the
page swap overhead.

Table 2 lists the optimal butterfly network parameters de-
termined by our solver for various input sizes. It also lists
the concrete constants for element-wise exchanges and page
swaps in our o-sort algorithm. Compared with the theoreti-
cally calculated constants of Table 1, here, the constants for
element-wise exchanges are larger, but the constants for page
swaps are smaller — this is by intention since the solver
attempts to balance these two sources of overheads and mini-
mize the total running time under our testing setup.

5 Experimental Results

5.1 Experimental Setup

We evaluated the sorting algorithms on an Intel Xeon Plat-
inum 8352S processor with 2.2 GHz base frequency and
DDR4 RAM.

We evaluated both the [EPC > data] and the [EPC <
data] settings. In the latter setting, we limit the EPC size to
128 MB which matches SGX v1. In both settings, we varied
the number of elements and the size of the payload strings.

Baselines. We compare with the following baselines:

• Prior oblivious sort algorithms. We compare with
bitonic sort [5], randomized shell short [23], and multi-
way bucket o-sort [38]. For the multi-way bucket o-sort,
we did not implement the version in the original pa-
per [38] due to its astronomical constants. Instead, we
use the “oblivious bin placement” algorithm described in
earlier work [10] for multi-way MergeSplit, and external-
memory mergeSort for the comparison-based sort.

• Non-oblivious baseline. For the [EPC > data] setting,
we use std::sort as the non-oblivious baseline, and
for the [EPC < data] setting, we use external-memory
MergeSort as the non-oblivious baseline.

5.2 Results on Oblivious Sorting

106 107 108

Input size N

10

20

50

100

200

500

1000
(a) Runtime (s) vs. input size

20 50 100 200 500
Element size (Byte)

20

50

100

200

500

1000

2000

(b) Runtime (s) vs. element size

Flexway o-sort
Recursive bitonic sort
Randomized shell sort

Multi-way bucket o-sort (variant)
Non-oblivious std::sort

Figure 6: Comparing our sorting algorithm with prior works
when EPC≥ data. Fig (a) shows the runtime in relation to the
input size, where each element consists of an 8-byte key and
a 120-byte payload. Fig (b) fixs an input size of 100 million
and varies the size of each element.

106 107 108

Input size N

10

20

50

100

200

500

1000
(a) Runtime (s) vs. input size

20 50 100 200 500
Element size (Byte)

50

100

200

500

1000

2000

(b) Runtime (s) vs. element size

Flexway o-sort
Multi-way bucket o-sort (variant)

Recursive bitonic sort
Non-oblivious mergesort

Figure 7: Comparing our sorting algorithm with prior works
(128 MB EPC). Other parameters are the same as Figure 6.

The “EPC > data” setting. For an input of 100 million
128-byte elements, our flexway o-sort is 28.8× faster than ran-
domized shell sort [23], 14.3× faster than multi-way bucket
o-sort [38], and 32% faster than the recursive bitonic sort.
As the input size expands, our speedup over bitonic sort in-
creases due to our asymptotic enhancement. For example,
with 1 billion elements each 200-bytes-wide, our flexway
o-sort becomes 88% faster than the recursive bitonic sort.

The “EPC < data” setting. When sorting 100 million 128-
byte elements using a 128 MB EPC, our flexway o-sort is
at least 12.4× faster than the multi-way bucket o-sort algo-
rithm [38], 38× faster than a non-recursive implementation
of bitonic sort, and 4.1× faster than a recursive version of
bitonic. At a larger data size of 1 billion with 200-bytes-wide
elements, our flexway o-sort becomes 7.2× faster than the
recursive bitonic sort.

Performance of MergeSplit. Figure 8 shows a micro bench-
mark of the multi-way MergeSplit algorithm. Our new algo-
rithm is approximately 18× faster than the naïve approach
using two bitonic sorts [5,10], and 2× faster than a multi-way
instantiation from OrCompact [35, 40].

5.3 Applications
Table 3 compares the runtime of three applications imple-
mented with our algorithm and the recursive bitonic sort:

• Histogram: obliviously count frequency of 256-byte URLs.

• ORAM initialization: obliviously initializing an ORAM
tree. We implement the initialization algorithm described
in EnigMap [46], assuming each data entry is 128 bytes.

• DB join: left join two tables based on an 8-byte ID. Apart
from the ID, each row is 256 bytes long for both tables.

4 5 6 7 8
Number of Ways

0

100

200

300

400

500

600

700

800

M
er

ge
Sp

lit
 p

er
 se

co
nd

Multi-way MergeSplit with 4096 Elements per Bucket

Our Approach
Using OrCompact
Using Two Bitonic Sorts

Figure 8: Throughput of our multi-way MergeSplit compared
with prior methods. Each bin contains 4096 elements of 136
bytes, including the 8-byte label.

Table 3: Benchmark Results for Different Applications.

Application Input
size

Runtime (s)
(128 MB EPC)

Runtime (s)
(EPC ≥ data)

Ours Bitonic Ours Bitonic

Histogram 223 45.66 187.2 35.14 71.80
226 447.5 2448 328.6 760.6

ORAM init 223 153.0 529.1 123.7 139.8
226 1483 7400 1086 1568

DB join 223 247.2 715.1 132.1 172.7
226 2038 9954 1206 1985

In the histogram application, with an input size of 226 el-
ements, our algorithm is 5.5× faster than the baseline given
a 128 MB EPC, and 2.3× faster when the EPC is unlimited.
Notably, the speedup surpasses the results in Figure 6 and
Figure 7. This is because histogram requires costly oblivious
comparisons between long URLs, and our algorithm incurs
significantly fewer comparisons than bitonic sort.

For ORAM initialization, our algorithm achieves a 5.0×
speedup over the baseline with a limited 128 MB EPC, and a
44% acceleration when the EPC is unlimited.

For database Join, when both tables have 226 rows, our
algorithm is 4.9× faster than the baseline with a 128 MB
EPC, and 65% faster when the EPC is unlimited.

5.4 Results on Oblivious Shuffling

Since our flexway o-sort first obliviously shuffles the array
and then applies a non-oblivious comparison-based sort, we
also obtain an oblivious shuffle as a by-product.

For shuffling 100 million elements of 128 bytes with no
EPC limit, our flexway o-shuffle is 72.5× faster than the
Waks-on/Waks-off o-shuffle [41] and 2.3× faster than Or-
Shuffle [40]. When running in SGX with a 128 MB EPC, our
flexway o-shuffle algorithm is 5.5× faster than OrShuffle [40]
and 16× faster than the multi-way bucket o-shuffle [38].

106 107 108

Input size N

10

20

50

100

200

500

1000
(a) Runtime (s) vs. input size

20 50 100 200 500
Element size (Byte)

20

50

100

200

500

1000

2000

(b) Runtime (s) vs. element size

Flexway o-shuffle
OrShuffle

Waks-in/Waks-out shuffle

Figure 9: Comparing our shuffling algorithm with prior works
when EPC size≥ data size. Parameters are the same as Fig. 6.

106 107 108

Input size N

10

20

50

100

200

500

1000
(a) Runtime (s) vs. input size

20 50 100 200 500
Element size (Byte)

50

100

200

500

1000

2000

(b) Runtime (s) vs. element size

Multi-way bucket o-shuffle (variant)
Recursive bitonic o-shuffle

OrShuffle
Flexway o-shuffle

Figure 10: Comparing our shuffling algorithm with prior
works (128 MB EPC). Parameters are the same as Fig. 7.

6 Concurrent Work

Concurrent work [35] implements oblivious sorting and shuf-
fling in a distributed model using the same algorithmic frame-
work as ours. Earlier work [9] observed that butterfly networks
are well-suited not only for external-memory algorithms but
also for distributed settings.

In comparison, our new MergeSplit building block is both
asymptotically and concretely faster than theirs and can serve
as a drop-in replacement in their framework. As shown in Fig-
ure 8, our MergeSplit algorithm is approximately 2× faster
than OrCompact [40], the algorithm employed in [35]. Since
MergeSplit dominates the computation for large inputs, this
improvement is expected to reduce the computational over-
head in [35] by nearly 50%.

7 Conclusion

In this paper, we introduced flexway o-sort, a new oblivious
sorting algorithm that is asymptotically optimal, concretely
efficient, and well-suited for hardware enclaves. Future work
will focus on parallelizing the algorithm to further improve
performance and adapting the algorithm to circuits for proto-
cols such as multi-party computation and fully-homomorphic
encryption.

8 Ethics Considerations

This work introduces an algorithm designed to defend against
existing attacks on secure enclave systems, aligning with pri-
vacy protection laws and contributing to the public good. All
experiments were conducted on local test machines without
involving any private or sensitive information. We do not an-
ticipate any harm or adverse consequences resulting from the
publication of this research.

9 Open Science

To promote transparency and facilitate further research, we
have open-sourced our algorithm’s implementation, including
the evaluation codes, at https://zenodo.org/records/
14629454. We welcome feedback and contributions to im-
prove the implementation and further the research in oblivious
sorting and other oblivious algorithms.

References

[1] Alok Aggarwal and S. Vitter, Jeffrey. The input/output
complexity of sorting and related problems. Commun.
ACM, 31(9):1116–1127, sep 1988.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n)
sorting network. In STOC, 1983.

[3] A. K. M. Mubashwir Alam, Sagar Sharma, and Keke
Chen. Sgx-mr: Regulating dataflows for protecting ac-
cess patterns of data-intensive sgx applications. Pro-
ceedings on Privacy Enhancing Technologies, 2021:5 –
20, 2020.

[4] Gilad Asharov, T-H. Hubert Chan, Kartik Nayak, Rafael
Pass, Ling Ren, and Elaine Shi. Bucket oblivious sort:
An extremely simple oblivious sort. In SOSA, 2020.

[5] Kenneth E. Batcher. Sorting networks and their applica-
tions. In AFIPS, 1968.

[6] Marina Blanton, Aaron Steele, and Mehrdad Alisagari.
Data-oblivious graph algorithms for secure computation
and outsourcing. In ASIA CCS, 2013.

https://zenodo.org/records/14629454
https://zenodo.org/records/14629454

[7] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: SGX cache attacks
are practical. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17), Vancouver, BC, August 2017.
USENIX Association.

[8] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page Table-Based attacks on en-
claved execution. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1041–1056, Vancouver,
BC, August 2017. USENIX Association.

[9] T.-H. Hubert Chan, Kai-Min Chung, Wei-Kai Lin, and
Elaine Shi. MPC for MPC: secure computation on a
massively parallel computing architecture. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer
Science Conference, ITCS 2020, January 12-14, 2020,
Seattle, Washington, USA, volume 151 of LIPIcs, pages
75:1–75:52. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020.

[10] T-H. Hubert Chan and Elaine Shi. Circuit opram: Unify-
ing statistically and computationally secure orams and
oprams. 2017.

[11] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez,
Salman Ahmed, Zhongshu Gu, Hani Jamjoom, Hubertus
Franke, and James Bottomley. Intel tdx demystified: A
top-down approach. ACM Comput. Surv., 56(9), apr
2024.

[12] Shumo Chu, Danyang Zhuo, Elaine Shi, and T.-H. Hu-
bert Chan. Differentially oblivious database joins: Over-
coming the worst-case curse of fully oblivious algo-
rithms. In 2nd Conference on Information-Theoretic
Cryptography, ITC 2021, July 23-26, 2021, Virtual
Conference, volume 199 of LIPIcs, pages 19:1–19:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[13] Richard Cole and Vijaya Ramachandran. Resource
oblivious sorting on multicores. ACM Trans. Parallel
Comput., 3(4), mar 2017.

[14] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Nat-
acha Crooks, and Raluca Ada Popa. Snoopy: Surpass-
ing the scalability bottleneck of oblivious storage. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 655–671,
New York, NY, USA, 2021. Association for Computing
Machinery.

[15] Muhammad El-Hindi, Tobias Ziegler, Matthias Hein-
rich, Adrian Lutsch, Zheguang Zhao, and Carsten Bin-
nig. Benchmarking the second generation of intel sgx

hardware. In Proceedings of the 18th International
Workshop on Data Management on New Hardware, Da-
MoN ’22, New York, NY, USA, 2022. Association for
Computing Machinery.

[16] Saba Eskandarian and Matei Zaharia. Oblidb: Oblivious
query processing for secure databases. Proc. VLDB
Endow., 13(2):169–183, oct 2019.

[17] Alireza Farhadi, MohammadTaghi Hajiaghayi,
Kasper Green Larsen, and Elaine Shi. Lower bounds
for external memory integer sorting via network coding.
In STOC, 2019.

[18] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C.
Myers, and G. Edward Suh. Verification of a practical
hardware security architecture through static informa-
tion flow analysis. In Proceedings of the Twenty-Second
International Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS 2017, Xi’an, China, April 8-12, 2017, pages 555–
568. ACM, 2017.

[19] M. L. Fredman and D. E. Willard. Blasting through
the information theoretic barrier with fusion trees. In
Proceedings of the Twenty-Second Annual ACM Sym-
posium on Theory of Computing, STOC ’90, page 1–7,
New York, NY, USA, 1990. Association for Computing
Machinery.

[20] O. Goldreich. Towards a theory of software protection
and simulation by oblivious RAMs. In STOC, 1987.

[21] Oded Goldreich and Rafail Ostrovsky. Software pro-
tection and simulation on oblivious RAMs. J. ACM,
1996.

[22] Michael T. Goodrich. Data-oblivious external-memory
algorithms for the compaction, selection, and sorting of
outsourced data. CoRR, abs/1103.5102, 2011.

[23] Michael T. Goodrich. Randomized shellsort: A simple
data-oblivious sorting algorithm. J. ACM, 58(6), dec
2011.

[24] Michael T. Goodrich. Zig-zag sort: A simple determin-
istic data-oblivious sorting algorithm running in O(N
Log N) time. In STOC, 2014.

[25] Michael T. Goodrich and Michael Mitzenmacher.
Privacy-preserving access of outsourced data via oblivi-
ous RAM simulation. In ICALP, 2011.

[26] C. A. R. Hoare. Algorithm 64: Quicksort. Commun.
ACM, 4(7):321–, July 1961.

[27] William Holland, Olga Ohrimenko, and Anthony Wirth.
Efficient oblivious permutation via the waksman net-
work. In Proceedings of the 2022 ACM on Asia Confer-
ence on Computer and Communications Security, ASIA
CCS ’22, page 771–783, New York, NY, USA, 2022.
Association for Computing Machinery.

[28] Zahra Jafargholi, Kasper Green Larsen, and Mark
Simkin. Optimal oblivious priority queues and offline
oblivious RAM. In SODA, 2021.

[29] Marcel Keller and Peter Scholl. Efficient, oblivious data
structures for MPC. In Asiacrypt, 2014.

[30] Donald E. Knuth. The Art of Computer Programming,
Volume III: Sorting and Searching. Addison-Wesley,
1973.

[31] Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. Can we
overcome the n logn barrier for oblivious sorting? In
SODA, 2019.

[32] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan
Huang, and Elaine Shi. Oblivm: A programming frame-
work for secure computation. In IEEE Symposium on
Security and Privacy, 2015.

[33] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 279–296, 2018.

[34] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi
Weinsberg, Nina Taft, and Elaine Shi. Graphsc: Parallel
secure computation made easy. In 2015 IEEE Sympo-
sium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 377–394. IEEE Computer
Society, 2015.

[35] N. Ngai, I. Demertzis, J. Ghareh Chamani, and D. Pa-
padopoulos. Distributed & scalable oblivious sorting
and shuffling. In 2024 IEEE Symposium on Security
and Privacy (SP), pages 156–156, Los Alamitos, CA,
USA, may 2024. IEEE Computer Society.

[36] M. S. Paterson. Improved sorting networks with o(logn)
depth. In Algorithmica, 1990.

[37] Enoch Peserico. Deterministic oblivious distribu-
tion (and tight compaction) in linear time. CoRR,
abs/1807.06719, 2018.

[38] Vijaya Ramachandran and Elaine Shi. Data oblivious
algorithms for multicores. In SPAA ’21: 33rd ACM
Symposium on Parallelism in Algorithms and Architec-
tures, Virtual Event, USA, 6-8 July, 2021, pages 373–384.
ACM, 2021.

[39] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
ACM Conference on Computer and Communications
Security (CCS), pages 199–212, New York, NY, USA,
2009. ACM.

[40] Sajin Sasy, Aaron Johnson, and Ian Goldberg. Fast fully
oblivious compaction and shuffling. In ACM CCS, 2022.

[41] Sajin Sasy, Aaron Johnson, and Ian Goldberg. Waks-
on/waks-off: Fast oblivious offline/online shuffling and
sorting with waksman networks. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’23, pages 3328–3342,
New York, NY, USA, 2023. Association for Computing
Machinery.

[42] Elaine Shi. Path oblivious heap: Optimal and practical
oblivious priority queue. In 2020 IEEE Symposium on
Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020, pages 842–858. IEEE, 2020.

[43] Signal. Technology deep dive: Building a faster oram
layer for enclaves. https://signal.org/blog/

building-faster-oram/, 2022.

[44] Emil Stefanov, Marten van Dijk, Elaine Shi, Christo-
pher W. Fletcher, Ling Ren, Xiangyao Yu, and Srinivas
Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In CCS, pages 299–310. ACM, 2013.

[45] Pramod Subramanyan, Rohit Sinha, Ilia A. Lebedev,
Srinivas Devadas, and Sanjit A. Seshia. A formal foun-
dation for secure remote execution of enclaves. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017, pages 2435–
2450. ACM, 2017.

[46] Afonso Tinoco, Sixiang Gao, and Elaine Shi. Enigmap :
External-memory oblivious map for secure enclaves. In
Usenix Security, 2023.

[47] Abraham Waksman. A permutation network. J. ACM,
15(1):159–163, jan 1968.

[48] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit oram:
On tightness of the goldreich-ostrovsky lower bound.
In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15,
page 850–861, New York, NY, USA, 2015. Association
for Computing Machinery.

[49] Danfeng Zhang, Yao Wang, G. Edward Suh, and An-
drew C. Myers. A hardware design language for timing-
sensitive information-flow security. In Proceedings of
the Twentieth International Conference on Architectural

https://signal.org/blog/building-faster-oram/
https://signal.org/blog/building-faster-oram/

Support for Programming Languages and Operating
Systems, ASPLOS 2015, Istanbul, Turkey, March 14-18,
2015, pages 503–516. ACM, 2015.

[50] Wenting Zheng, Ankur Dave, Jethro G. Beekman,
Raluca Ada Popa, Joseph E. Gonzalez, and Ion Sto-
ica. Opaque: An oblivious and encrypted distributed
analytics platform. In NSDI, 2017.

A Additional Algorithmic Details

At the base case of Interleave, there are p elements with dis-
tinct keys in {0,1, ..., p−1}, and we need to sort them in as-
cending order. While we can apply a concretely-efficient sort-
ing network in practice given that p is small, it does not satisfy
our requirement for an asymptotically O(n logn)MergeSplit
algorithm. Instead, our construction applies a Waksman’s per-
mutation network [47] to reorder the elements obliviously
using no more than p log p exchanges. For p being power
of two, Waksman [47] gave an algorithm to calculate the
routing plan using a permutation matrix of size p× p. Since
p ∈ O(

√
logN) and each entry of the matrix can be repre-

sented with one bit, we can make the algorithm oblivious by
packing the permutation matrix into O(1) words. However, as
we want our butterfly network to have flexible ways, we need
to emulate the permutation network for arbitrary p no more
than
√

logN. In this section, we describe how to achieve this
goal by recursively applying our Balance algorithm.

Syntax. Permute takes in an array A with n elements whose
keys are a permutation of {0,1, . . . ,n− 1}. The goal of
Permute is to rearrange the array A such that the i-th ele-
ment has key i.

Constraints. We require n ∈ O(
√

logN) .

Intuition: when n is a power of 2. Our permutation net-
work structure is the same as Waksman, but we propose an
algorithm that can obliviously calculate the routing plan along
the way using Balance as a primitive. For simplicity, we first
assume n to be a power of two. As a preprocessing step, we
modify each element’s key to be its original key modulo n/2.
The set of keys hence becomes {0,1, ...,n/2− 1} and each
distinct key appears exactly twice. Also, the number of dis-
tinct keys is no more than

√
logN. With these preconditions,

we can call Balance on the array, so that both the left and right
half contain a suit of these new keys. We then call Permute
on each half recursively. As a result, for i∈ {0,1, ...,n/2−1},
both A[i] and A[i+ n/2] have new key i, which means their
original keys are i and i+n/2. To complete the permutation,
we just need to conditionally exchange A[i] and A[i+ n/2],
putting the one with the original key i at the front.

Algorithm 4 Permute(A)
Input: The input array A contains n elements, where n ∈
O(
√

logN). The i-th element has a key π(i) along with a
payload, where π is a permutation of set {0,1, ...,n−1}. Also,
we let each element own a stack, which can be integrated into
the same word storing the key.
Output: A is rearranged such that the i-th element has key i.

1: n← |A|, m← ⌈n/2⌉
2: if n = 1 then return
3: If n is odd, pad a filler with key n at the end of A.
4: for i← 0 to 2m−1 do
5: b← ⌊A[i].key/m⌋. Push b to A[i].stack.
6: A[i].key← A[i].key mod m

7: BALANCE(A, m)
8: If n is odd, remove the last element of A.
9: PERMUTE(A[0 : m−1])

10: PERMUTE(A[m : n−1])
11: for i← 0 to n−1 do
12: Pop b from A[i].stack.
13: A[i].key← A[i].key+b ·m
14: for i← 0 to ⌊n/2⌋−1 do
15: Obliviously exchange A[i] and A[i+m]. Put the one

with smaller key to the front.

Detailed algorithm: when n is not a power of 2. Algo-
rithm 4 gives a full description of Permute and generalizes it
to handle lengths that are non-powers of 2.

• Handling lengths that are non-powers of 2. If the current
n is not even, we pad a filler element with key n at the
end of the array (line 3). Since Balance does not change
the last element, the filler is still at the end, and we may
exclude it after performing the Balance operation. In an
actual implementation, the filler can be imaginary and need
not occupy any extra space.

• Save and restore the original keys without extra space.
When we modify an element’s key k to the new key k
mod ⌈n/2⌉, we need to save the original key k. This can be
achieved without extra space. Conceptually, imagine that
each element owns a stack, and when we modify k to the
new key k mod ⌈n/2⌉, we push the bit whether k ≥ ⌈n/2⌉
to its stack (lines 5-6). This way, we can recover the origi-
nal key k after the recursion (lines 12-13). Since storing k
mod ⌈n/2⌉ and whether k ≥ ⌈n/2⌉ does not take up more
bits than storing the original k, we can integrate the stack
into the same word that stores the key.

Example. For example, Figure 11 depicts the network struc-
ture of the Permute algorithm for n = 7 (see Algorithm 4).
The first two levels of the network are recursive calls of

Figure 11: Permute network for n = 7. The solid numbers are
the original keys. The numbers in the parentheses on the left of
the solid numbers are the modified keys used in the previous
Balance operation, and the numbers in the parentheses on the
right of the solid numbers are the modified keys used in the
next Balance operation.

Balance. Then, in the remaining levels, elements are ex-
changed by comparing the restored keys. This network uses
14 exchanges, which is better than an optimal comparison-
based sorting network for n = 7 using 16 compare-and-
exchanges [30].

Lemma A.1 (Computational overhead of Permute). Algo-
rithm 4 incurs O(n logn) numerical computation and no more
than n logn exchanges.

Proof. Let f (n) denote the number of exchanges to Permute
an input of size n. When n is even, Balance involves n/2−1
exchanges, and n/2 exchanges are performed at the end. We
need to solve two subproblems of size n/2. When n is odd,
Balance involves (n+1)/2−1 exchanges, and (n−1)/2 ex-
changes are performed at the end. We need to solve two
subproblems of size (n+ 1)/2 and (n− 1)/2. To conclude,
f (n) = f (⌈n/2⌉) + f (⌊n/2⌋) + n− 1. For the base cases,
f (1) = 0 and f (2) = 1. We can inductively prove that f (n)≤
n log(n−1) for n≥ 3.

Finally, since Balance requires O(n) numerical computa-
tion, it follows that Permute requires O(n logn) numerical
computation.

Lemma A.2 (Obliviousness of Algorithm 4). The memory
access patterns of Algorithm 4 are deterministic and depend
only on the length of the input array but not the contents of
the array.

Proof. Clearly, all the if conditions depend only on the in-
put size n, so does the number of loop cycles. As shown in
Lemma 3.2, the access patterns of the sub-procedure Balance
depend only on the length of its input A and the parameter
m. Further, given the length of the original array, the input
lengths and m to all recursions are fixed. Finally, the condi-
tional exchanges at line 15 also enjoy deterministic and fixed
access patterns.

B Deferred Proofs

B.1 Rounding Lemma
When constructing our flexway butterfly network, we rely on
the following lemma to show that the multiplicative overhead
due to rounding is always o(1).

Lemma B.1 (Rounding lemma). For integer N′ ≥ 2 and 2≤
pmax < 2

√
logN′ , we can find p1, p2, . . . , pL ∈ N such that for

every ℓ ∈ [L],
⌊pmax/2⌋ ≤ pℓ ≤ pmax;

and moreover,

1≤
∏ℓ∈[L] pℓ

N′
≤ 1+

1
⌊pmax/2⌋

.

Proof. Set L = ⌈logpmax
N′⌉. Define

β = pL
max/N′, γ =

pmax

⌊pmax/2⌋
, and κ = ⌈logγ β⌉.

Immediately, we have β ∈ [1, pmax) and γ ≥ 2. This further
implies

κ≤ ⌈logβ⌉ ≤ ⌈
√

logN′⌉ ≤ ⌈ logN′

log pmax
⌉= L.

Set
p1 = p2 = . . .= pκ−1 =

pmax

γ
,

pκ+1 = pκ+2 = . . .= pL = pmax,

and

pκ = ⌊γκ−1

β
pmax⌋+1.

Since, logγ β≤ κ < logγ β+1, we have

pmax

γ
+1≤ pκ ≤ pmax.

Moreover,

∏
ℓ∈[L]

pℓ ≥
pL

max

β
= N′,

∏
ℓ∈[L]

pℓ ≤
pκ

pκ−1
· pL

max

β
= (1+

1
pmax/γ

)N′.

B.2 Analysis of Building Blocks
Lemma 3.4: Obliviousness of Algorithm 2

Proof. The if condition at line 2 only depends on the in-
put size and parameter p. As shown in Lemma 3.2 and
Lemma A.2, the Balance and Permute sub-procedures have
access patterns that depend only on their input lengths and
p, and given the input length of the original array, the input
lengths to all recursive calls are fixed.

Lemma 3.6: Obliviousness of Algorithm 3

Proof. For p∈O(
√

logN) and Z ∈ 2O(
√

logN), it only requires
p logZ ∈ O(logN) bits to store all the counts in the prepro-
cessing step. As described in the detailed algorithm, by pack-
ing the counts into O(1) words, the preprocessing step have
a fixed access pattern. By Lemma 3.4, the call to Interleave
is also deterministic and depends only on the input size and
p. The transposition at the end clearly enjoys fixed access
patterns as well.

B.3 Analysis of Flexway O-Shuffle
Theorem B.1. Let the bin size Z ∈Ω(logN(log logN)3), and
the slack factor ε ∈ Θ(1

loglogN), the flexway o-shuffle algo-
rithm described in Section 4 is oblivious.

Proof. The proof is similar to earlier works [4, 38]. If there is
no overflow, the input requirements of algorithms 1, 2, 3 will
be satisfied, and the access pattern of the oblivious random
binning process is deterministic and depend only on input
length N, M, B, the size of each element, and the desired
failure probability (which in turn decide how we choose the
other parameters including Z, ε and the number of ways).
After the oblivious random binning, we sort each bucket and
reveal the number of real elements per bucket. Asharov et
al. [4] shows that such leakage is safe because the number of
real elements in each last-level bucket is simulatable without
knowledge of the input array - it’s just the bin loads of a balls-
into-bins process. Therefore, it suffices to prove that no bin
will receive more than Z elements except with negligible (in
N) probability, meaning a simulator that assumes no overflow
can produce access patterns statistically indistinguishable
from real-world execution. This holds as long as Z is super-
logarithmic in N due to the following reasoning.

Consider a fixed bin A(ℓ)
j at level ℓ and index j. It can only

receive real elements from Pℓ initial bins, each filled with
Z/(1+ ε) real elements, where Pℓ := ∏

ℓ
h=1 ph. An element

with label τ reaches A(i)
j only when τ ≡ j (mod Pi), which

occurs with a probability 1/Pi. Since the labels are chosen
independently, we can apply a Chernoff bound to show that
A(i)

j overflows with a probability

Poverflow = exp(−Ω(ε2Z))≤ exp(−Ω(logN log logN))

= N−Ω(log logN).

At each level, there are (1+ ε)N/Z bins, and the butterfly
network has a maximum of log((1+ ε)N/Z) levels (corre-
sponding to the case where every level is two-way). By apply-
ing a union bound over all levels and all bins, we obtain the
desired bound on the failure probability.

Theorem B.2. Given bin size Z ∈ Θ(logN(log logN)3),
flexway o-shuffle incurs (2 + o(1))N logN exchanges and
O(N logN) numerical computation.

Proof. By Lemma B.1, the flexway butterfly network contains
no more than (logO(N/Z))/ log p levels, and MergeSplit is
called (1+o(1))N/(pZ) times at each level. By Lemma 3.5,
each MergeSplit operation incurs no more than pZ(1

2 logZ +
log p+1) exchanges.

Substituting p ∈Θ(
√

logN) and Z ∈Θ(logN(log logN)3),
it requires the following number of exchanges for routing:

(1+o(1))N
logO(N/Z)

log p
(

1
2

logZ + log p+1)

∈ (2+o(1))N logN.

Calling bitonic sort to shuffle each bin at the last level re-
quires 1

4 Z logZ(logZ +1) exchanges. Since the size of each
bin is polylogN and the label length is Θ(logN), the probabil-
ity of label collision in each bin is O(N−C) for some positive
constant C. Therefore, we only need 1+o(1) trials in expec-
tation. Since there are (1+o(1))N

Z bins, the expected number of
exchanges to sort the bins at the last level is

(1+o(1))N
1
4

logZ(logZ +1) ∈ o(N logN).

Finally, removing fillers takes O(N) exchanges. Hence, the
total number of exchanges is

(2+o(1))N logN.

For numerical computation, labeling all the elements re-
quires O(N logN) computation, as we assumed that each label
has O(logN) bits and generating each random bit requires
constant time. To extract the keys for MergeSplit, only one
division and one modulus operation are required per element.
Under the word-RAM model, we can determine the multi-
plicative inverse of all choices of the divisor p ∈ O(

√
logN)

at compile time, allowing each division and modulo operation
to be done in constant time. Since there are Θ(N) elements
and Θ(logN

log logN) levels, key extraction requires o(N logN) nu-
merical computation in total. For both MergeSplit and bitonic
sort, the amount of numerical computation is asymptotically
upperbounded by the number of exchanges. Therefore, the
time complexity of numerical computation is O(N logN).

Theorem B.3. Given that B≥ log2 N, M ≥ B2, and let Z ∈
Θ(logN(log logN)3), the number of page swaps for flexway
o-shuffle is

((2+o(1)) log M
B

N
B
+1)

N
B
.

Proof. By Lemma B.1, there are (1+o(1))N/Z bins in total.
Each MergeSplit performs at least pmin =

1
2
√

logN ways of
partitioning and at most pmax =

√
logN ways of partitioning.

Hence, the total number of levels in the butterfly network can
be upper-bounded as:

Ltotal ∈ ⌈logpmin
((1+o(1))N/Z)⌉

⊂ (1+o(1))
logN− logZ
1/2 · log logN

A single pass of batch execution can route all elements
through at least:

Lbatch = ⌊logpmax

M
Z
⌋ ≥ logM− logZ

1/2 · log logN
−1

levels. Therefore, the number of passes is at most:

npass = ⌈
Ltotal

Lbatch
⌉

∈ (1+o(1))
logN− logZ

logM− logZ−1/2 · log logN
+1.

Substituting Z ∈Θ(logN(log logN)3), we obtain:

npass ∈ (1+o(1))
logN

logM−3/2loglogN
+1

Given B≥ log2 N, we can further derive:

npass ≤ (1+o(1)) log M
B

N
B
+1.

Each pass requires (1+ o(1))N
B page swaps, except that in

the first pass we only need to read (1+ o(1))N
B pages and

similarly in the last pass we only need to write (1+o(1))N
B

pages. Between every neighboring passes, matrix transposi-
tion results in another (1+ o(1))N

B page swaps. Therefore,
the total number of page swaps is

nswap ∈ 2(npass−1)(1+o(1))
N
B
+(1+o(1))

N
B

= ((2+o(1)) log M
B

N
B
+1)

N
B
.

B.4 Analysis of Flexway O-Sort
Theorem B.4. Let the bin size Z ∈Ω(logN(log logN)3), and
the slack factor ε ∈Θ(1

loglogN). Our flexway o-sort algorithm
described in Section 4 is oblivious.

Proof. The proof resembles earlier works [4, 38], which
showed that if we apply an oblivious shuffling algorithm and
then any non-oblivious, comparison-based sort, the resulting
algorithm is oblivious.

Theorem B.5. Given bin size Z = logN(log logN)3, flexway
o-sort incurs (2.23+o(1))N logN exchanges and O(N logN)
numerical computation.

Proof. When merging multiple sorted chunks in the external
memory mergesort, it is sufficient to store pointers in the heap.
This approach ensures that each element is copied only once
during each pass. Consequently, the complexity of merging
in the exchange model can be expressed as O(N logM/B

N
B),

which is o(N logN).

At the base case of the external mergesort, each quick-sort
incurs ln2

3 n logn≈ 0.23n logn exchanges in expectation [26].
Suppose that the batch size is M′, where M′ ≤ N, the number
of exchanges incurred across all base case instances amounts
to an expected value of 0.23N logM′ ≤ 0.23N logN. By The-
orem B.2, the expected number of exchanges required by
flexway o-sort is

(1.23+ c+o(1))N logN.

Since external memory mergesort uses O(N logN) nu-
merical computation, the overall numerical computation of
flexway o-sort is still O(N logN).

Theorem B.6. Given that M ≥ B2, B≥ log2 N, and let Z ∈
Θ(logN(log logN)3), the number of page swaps for flexway
o-sort is

((3+o(1)) log M
B

N
B
+1)

N
B
.

Proof. First, we show that during the last pass of shuffling,
elements can be rearranged into O(N/M) sorted chunks. Let
Mbatch represent the batch size at the last level.
Case 1: If Mbatch ≥ M/2, then there are at most 2(1 +
o(1))N/M batches, with each batch producing a sorted chunk.
Case 2: If Mbatch < M/2, then we can allocate a buffer of size
M/2 in the enclave and always copy the shuffled elements
first to this buffer. When the buffer is full, we sort all the M/2
elements and write them out as a chunk. Consequently, there
can be at most ⌈2N/M⌉ sorted chunks.

Assigning a one-page buffer to each sorted chunk, in the
worst-case, the required number of page swaps to merge all
the chunks hierarchically is:

n′swap ∈ (1+o(1))
N
B
· (1+ log M

B
O(

N
M
)).

Considering M ≥ B2 and B≥ logc N, we have:

n′swap ∈ (1+o(1))
N
B
· log M

B

N
B
.

Combining this with Theorem B.3, we obtain the target ex-
pression.

	Introduction
	Our Results and Contributions
	Technical Highlights

	Preliminaries
	Threat Model
	Background on Bucket Oblivious Sort

	A New Multi-Way MergeSplit
	Overview
	Balance
	Interleave
	Multi-way MergeSplit

	Flexway O-Sort
	Basic Algorithm and External-Memory Efficiency
	Other Optimizations

	Experimental Results
	Experimental Setup
	Results on Oblivious Sorting
	Applications
	Results on Oblivious Shuffling

	Concurrent Work
	Conclusion
	Ethics Considerations
	Open Science
	Additional Algorithmic Details
	Deferred Proofs
	Rounding Lemma
	Analysis of Building Blocks
	Analysis of Flexway O-Shuffle
	Analysis of Flexway O-Sort

