
Yannakakis+: Practical AcyclicQuery Evaluation with
Theoretical Guarantees

QICHEN WANG∗, Hong Kong Baptist University, Hong Kong SAR

BINGNAN CHEN∗, Hong Kong University of Science and Technology, Hong Kong SAR

BINYANG DAI, Hong Kong University of Science and Technology, Hong Kong SAR

KE YI, Hong Kong University of Science and Technology, Hong Kong SAR

FEIFEI LI, Alibaba Group, China
LIANG LIN, Alibaba Group, China

Acyclic conjunctive queries form the backbone of most analytical workloads, and have been extensively

studied in the literature from both theoretical and practical angles. However, there is still a large divide

between theory and practice. While the 40-year-old Yannakakis algorithm has strong theoretical running time

guarantees, it has not been adopted in real systems due to its high hidden constant factor. In this paper, we

strive to close this gap by proposing Yannakakis
+
, an improved version of the Yannakakis algorithm, which

is more practically efficient while preserving its theoretical guarantees. Our experiments demonstrate that

Yannakakis
+
consistently outperforms the original Yannakakis algorithm by 2x to 5x across a wide range of

queries and datasets.

Another nice feature of our new algorithm is that it generates a traditional DAG query plan consisting

of standard relational operators, allowing Yannakakis
+
to be easily plugged into any standard SQL engine.

Our system prototype currently supports four different SQL engines (DuckDB, PostgreSQL, SparkSQL, and

AnalyticDB from Alibaba Cloud), and our experiments show that Yannakakis
+
is able to deliver better

performance than their native query plans on 160 out of the 162 queries tested, with an average speedup of

2.41x and a maximum speedup of 47,059x.

CCS Concepts: • Information systems→ Query optimization; Query planning.

Additional Key Words and Phrases: conjunctive query; acyclic joins; cost-based optimizer; query rewrite

ACM Reference Format:
Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin. 2025. Yannakakis

+
: Practical Acyclic

Query Evaluation with Theoretical Guarantees. Proc. ACMManag. Data 3, 3 (SIGMOD), Article 235 (June 2025),

28 pages. https://doi.org/10.1145/3725423

Acknowledgments

This work was supported by Hong Kong RGC Grants (Project No. 12200524, 16205422, 16204223,

16203924, C2004-21GF, and C2003-23Y) and an AIR grant from Alibaba Cloud.

∗
Both authors contributed equally to this research.

Authors’ Contact Information: Qichen Wang, qcwang@comp.hkbu.edu.hk, Hong Kong Baptist University, Hong Kong SAR;

Bingnan Chen, bchenba@cse.ust.hk, Hong Kong University of Science and Technology, Hong Kong SAR; Binyang Dai,

bdaiab@ust.hk, Hong Kong University of Science and Technology, Hong Kong SAR; Ke Yi, yike@cse.ust.hk, Hong Kong

University of Science and Technology, Hong Kong SAR; Feifei Li, lifeifei@alibaba-inc.com, Alibaba Group, China; Liang

Lin, yibo.ll@alibaba-inc.com, Alibaba Group, China.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/6-ART235

https://doi.org/10.1145/3725423

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

https://doi.org/10.1145/3725423
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3725423

235:2 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

1 Introduction

Selection-join-projection-aggregation queries, a.k.a. conjunctive queries (CQs), form the backbone

of most analytical workloads
1
. The following query, which is a slightly simplified version of TPC-H

Query 9 [6], is one such example:

SELECT n_name, o_orderkey, l_returnflag, SUM(ps_supplycost * l_quantity) AS part_cost

FROM nation, supplier, part, orders, lineitem, partsupp

WHERE o_orderdate < DATE '1996-12-31' and o_orderdate >

DATE '1996-01-01' and p_name LIKE '%blue%'

and o_orderkey = l_orderkey and ps_suppkey = l_suppkey

and ps_partkey = l_partkey and p_partkey = l_partkey

and s_suppkey = l_suppkey and s_nationkey = n_nationkey

GROUP BY n_name, o_orderkey, l_returnflag;

Due to their central importance, how to evaluate conjunctive queries efficiently has been ex-

tensively studied in the database community, from both practical and theoretical angles. The

predominant approach, implemented in most relational engines, aims to find an optimal query

plan that takes the form of a directed acyclic graph (DAG). The leaves of the DAG correspond to

the input relations, while each internal node represents a relational operator, which can be either

unary (selection, projection, and aggregation) or binary (join and semi-join), and the root node of

the DAG yields the query results.

Example 1.1. We ran the query above in DuckDB, a popular column-based relational engine

especially optimized for analytical workloads. The query plan it used is as follows (we rename the

join attributes and use the natural join syntax):

(1) 𝐽1 ← 𝜋partkey,p_name𝜎p_name LIKE... (part) Z 𝜋partkey,orderkey,suppkey,l_returnflag,l_quantity (lineitem) ;
(2) 𝐽2 ← 𝜋orderkey𝜎· · ·<o_orderdate<· · · (orders) Z 𝐽1;

(3) 𝐽3 ← 𝜋suppkey,nationkeysupplier Z 𝜋n_name,nationkeynation;

(4) 𝐽4 ← 𝐽3 Z 𝐽2;

(5) 𝐽5 ← 𝐽4 Z 𝜋partkey,suppkey,ps_supplycost (partsupp) ;
(6) 𝑄 ← 𝛾n_name,orderkey,l_returnflag,SUM(ps_supplycost*l_quantity) (𝐽5).

However, from the theoretical angle, this query plan is sub-optimal for the following two reasons:

First, there might be many dangling tuples that are unnecessarily involved in the joins, especially

when the query has some highly selective predicates. For instance, the predicate on o_orderdate
may filter out a large portion of the orders table, which means that many intermediate join results

in 𝐽1 will not be able to join with any tuple in the orders table, hence become dangling. These
dangling tuples could blow up the intermediate join size to𝑂 (𝑁 𝜌) in the worst case, where 𝑁 is the

input size and 𝜌 is the fractional edge cover number2 of the query. Second, this plan evaluates the

full multi-way join before the aggregation. This can be sub-optimal since the full join size (denoted

by 𝐹 subsequently) can be much larger than the final query output size (denoted by 𝑀), which

is equal to the number of groups. In particular, when the aggregation does not have a GROUP BY
clause, it aggregates all join results into a single value, hence𝑀 = 1.

In practice, nevertheless, these two potential risks may not materialize because data is often

“nice”: We ran the query on the TPC-H benchmark dataset with a scale factor (SF) of 500 in DuckDB,

1
The traditional definition of conjunctive queries does not consider aggregations. The incorporation of aggregations is

introduced in [10, 42] under the semiring framework; see Section 2.1 for details.

2𝜌 = 4 for TPC-H Q9. Please see [14] for the precise definition of 𝜌 , but this is not crucial for understanding the paper.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:3

and it finished in just 9.2 seconds. In particular, this is because all the joins in this query are between

a primary key (PK) and a foreign key (FK), which limits all intermediate join sizes, as well as the

full join size 𝐹 , to at most the input size 𝑁 . To expose the risk, we removed the PK constraints

and duplicated an SF-100 dataset 5 times. This results in a dataset of the same size, but each PK

now has 5 copies. This turns the joins into many-to-many joins, and the intermediate join sizes

are no longer bounded by 𝑁 . On this dataset, DuckDB’s running time blows up to 488 seconds,

a 50x increase. We have also tested other benchmarks with naturally occurring many-to-many

joins, such as LSQB [49] and JOB [45], and observed similar phenomenon (please see Section 7 for

detailed results).

Back to the theory side, there is actually a 40-year-old solution that already addressed these

issues when the query is acyclic (TPC-H Q9 is acyclic, and the formal definition will be given

in Section 2). In 1981, Yannakakis [72] gave an algorithm that has a worst-case running time of

𝑂 (𝑁 +𝑀) or 𝑂 (min(𝑁𝑀, 𝐹)), depending on whether the query has a certain property known as

free-connex (detailed definition given in Section 2). Note that such running times are especially

appealing when𝑀 is small, which is often the case for analytical queries that return aggregated

results. Furthermore, the 𝑂 (𝑁 +𝑀) time, which is achievable for free-connex queries, is clearly

asymptotically optimal. Yannakakis’ algorithm achieves these running times based on two key

ideas: (1) use a series of semi-joins to remove all the dangling tuples before doing any joins, and (2)

push the aggregations over joins as much as possible.

Unfortunately, despite its nice theoretical guarantees, Yannakakis’ algorithm has not been adopted

in any query engines due to its large hidden constant factor [54]. Indeed, we tested Yannakakis’

algorithm in DuckDB on the TPC-H dataset with SF=500, and it took 21.3 seconds to evaluate

Query 9, more than double that of DuckDB’s query plan shown in Example 1.1. Similar results have

also been observed in [29]. On the 5-copy dataset, however, we do see a significant improvement:

Yannakakis’ algorithm still runs in around 21 seconds (thanks to its worst-case guarantee), much

faster than DuckDB’s query plan which took 488 seconds.

1.1 Our Contributions

This paper presents Yannakakis
+
, an improved version of the Yannakakis algorithm, with the

following properties:

(1) It enjoys the same theoretical guarantee as the original Yannakakis algorithm on acyclic queries,

i.e., it runs in 𝑂 (𝑁 +𝑀) time if the query is free-connex, and 𝑂 (min(𝑁𝑀, 𝐹)) time otherwise.

(2) It is more practically efficient than the Yannakakis algorithm on both PK-FK joins and many-to-

many joins. It consistently outperforms the Yannakakis algorithm by 2x to 5x (the maximum

speedup is 87x) across four different SQL engines and a variety of queries/datasets. It thus

covers the shortcomings of the Yannakakis algorithm on PK-FK joins, while extending its gain

on many-to-many joins, as well as on queries that involve both types of joins. This makes

Yannakakis
+
the method of choice for a wide range of queries and datasets: Out of a total of

162 queries tested, Yannakakis
+
is able to improve the SQL engines’ own plans on 160 of them,

with an average speedup of 2.41x and a maximum speedup of 47,059x.

(3) Yannakakis
+
is also pure relational, in the sense that it can be formulated as a DAG query plan

consisting of standard relational operators (see Table 1 for the operators that are needed). In

fact, we were able to implement Yannakakis
+
completely outside a SQL engine, by generating

the query plan in the form of SQL statements. This allows Yannakakis
+
to be used as a simple

plug-in on top of any SQL engine, modulo minor changes in the syntax of the generated SQLs.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:4 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

Operator SQL Query Complexity

Selection(𝜎𝑓 (𝑅)) SELECT * FROM R WHERE f; 𝑂 (|𝑅 |)

Projection(𝜋𝑬 (𝑅)) SELECT 𝑬, ⊕(𝑣) AS 𝑣

FROM 𝑅 GROUP BY 𝑬;
𝑂 (|𝑅 |)

Join(𝑅1 Z 𝑅2)
SELECT *, 𝑅1 .𝑣 ⊗ 𝑅2 .𝑣 AS 𝑣

FROM 𝑅1 NATURAL JOIN 𝑅2;

𝑂 (|𝑅1 | + |𝑅2 |
+ |𝑅1 Z 𝑅2 |)

SemiJoin(𝑅1 ⋉ 𝑅2)
SELECT * FROM 𝑅1 WHERE

𝑅1 .𝑘𝑒𝑦 in (SELECT

DISTINCT 𝑅2 .𝑘𝑒𝑦 FROM 𝑅2);

𝑂 (|𝑅1 | + |𝑅2 |)

Table 1. Summary of relation operators and the corresponding SQL queries, where 𝑣 represents the annotation

Furthermore, as many other queries can be reduced to acyclic CQs, such as cyclic CQs, queries

with conjunctive sub-queries, unions and differences of CQs, top-𝑘 queries, etc, Yannakakis
+
can

also be used to improve their evaluation by combining with other techniques. We describe these

extensions in Section 4.

Technical highlights. The practical improvements from Yannakakis to Yannakakis
+
are mostly

driven by the following two observations. First, the original Yannakakis algorithm, due to its

theoretical motivation, separates the evaluation process into two distinct stages: The first stage

uses two passes of semi-joins to remove all the dangling tuples, which takes 𝑂 (𝑁) time. Then the

second stage uses a series of aggregation-joins to compute the query results, which takes𝑂 (𝑀) time

(assuming the query is free-connex). While theoretically clean, this separation incurs unnecessary

computational overheads. In Yannakakis
+
, we push some aggregation-joins to before the semi-joins

as much as possible, which is important since the aggregations can greatly reduce the data size,

especially for queries with a small query output size 𝑀 , while each join can remove a relation.

Furthermore, we also reduce the number of semi-joins needed; in particular, for a class of queries

known as relation-dominated, no semi-join is used at all. A possibly undesirable consequence of

removing some of the semi-joins is that not all dangling tuples are removed, so a technical challenge

in our development is to prove that the remaining dangling tuples do not affect the worst-case

running time. In Section 3, we describe these changes that we make to the Yannakakis algorithm.

Second, both Yannakakis and Yannakakis
+
actually generate a family of query plans instead of a

single one. Theoretically, all these plans have the same asymptotic running time, but they differ in

the hidden constant. Thus, it is important to pick an optimal (or near-optimal) plan from this family.

Towards this end, we design a query optimizer tailored for Yannakakis
+
. Our optimizer follows

the standard query optimization pipeline, consisting of a rule-based component and a cost-based

component. However, we must introduce some changes to both components, since Yannakakis
+

has a different search space of query plans that existing query optimization methods do not cover.

We describe our Yannakakis
+
optimizer in Section 5.

1.2 Related Work

Efficient evaluation of conjunctive queries has been extensively studied in the literature. Sideways

information passing (SIP) [9] is a widely used technique for query optimization that reduces

intermediate results, and it is adopted by systems such as DBMS X and Amazon Redshift [35].

However, unlike the Yannakakis algorithm, SIP does not remove all dangling tuples when the query

contains more than two relations, which can lead to suboptimal plans. Meanwhile, worst-case

optimal join algorithms (WCOJ) [55] perform better on highly cyclic queries. The Yannakakis

algorithm and WCOJ can be combined using the generalized hypertree decomposition framework

[30, 31] to provide running times that depend on the level of cyclicity of the query, measured

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:5

by various width parameters [11, 30, 31, 33]. Recent studies extend the Yannakakis algorithm to

support different operators and scenarios, including projections [15], aggregations [10, 42], unions

[21], differences [40], comparisons [67], top-k queries [66], dynamic [41, 65] or secure [68] query

processing. While these developments are promising, very few of them have made their way to

real systems yet.

Several recent works [18, 19, 71, 75] focus on implementing the Yannakakis algorithm efficiently

within a particular database engine, but they do not change the algorithm itself. In contrast,

we have improved the algorithm. Thus, their techniques are complementary to ours and can be

combined with our approach when Yannakakis
+
is integrated into their target database engine.

Furthermore, Yannakakis
+
is aimed at conjunctive queries with (group-by) aggregations, while

[18, 19, 71] only considers full joins. For cyclic queries, RelationalAI [57] and Umbra [28] adopt

WCOJ inside databases, but they have to build the engine from ground up, since WCOJ does not

directly generate a DAG plan using standard operators available in existing systems. Our method

can also be combined with WCOJ to handle cyclic queries, as explained in Section 4. We have not

implemented this combination, since we prefer a purely relational approach that yields standard

DAG query plans.

We prove the worst-case running time of Yannakakis
+
based on the running times in Table 1. If

indexes are available, some of these operators can be executed faster, e.g., selection can be sped up

to𝑂 (log |𝑅 | + |𝜎𝑓 (𝑅) |) when there is a B-tree index and 𝑓 is a range predicate; assuming |𝑅2 | > |𝑅1 |
and there is a hash-index on 𝑅2, then the join can be computed in time 𝑂 (|𝑅1 | + |𝑅1 Z 𝑅2 |). There
is an extensive literature on indexing techniques [22, 25, 38, 44]. The availability of indexes can

only make Yannakakis
+
run faster, so all our theoretical guarantees are not affected; in practice, it

can be factored into our cost-based optimizer to pick the best plan in the Yannakakis
+
family.

Cost-based optimization is an important step in reducing the hidden constant factor of query

plans, which is also used in Yannakakis
+
. It involves three main components: cardinality estimation

(CE), cost model (CM), and plan enumeration (PE). CE employs data statistics and assumptions

on data distribution to estimate tuple counts using synopsis-based (e.g., histogram-based [12, 43]

and sketch-based [20, 58]), sampling-based [23, 63, 70, 74], and learning-based methods [39, 62, 69].

CM translates the database state (which relations are in memory, availability of indexes, etc.) and

cardinality estimates into execution costs, with traditional models defined by experts and modern,

adaptive learning-based methods [46, 47, 60]. PE identifies the query plan with minimal cost,

employing both non-learning (dynamic programming [50, 51, 59], top-down strategies [24, 27])

and learning-based approaches [37, 48]. For CE and CM, we can use existing techniques. However,

we have to design new PE methods, since Yannakakis
+
has a different search space.

2 Preliminaries

2.1 ConjunctiveQueries

We consider conjunctive queries (CQs) of the following form:

Q = 𝜋O (𝑅1 (A1) Z 𝑅2 (A2) Z · · · Z 𝑅𝑛 (A𝑛)) , (1)

where each 𝑅𝑖 (A𝑖) is a relation with a set of attributesA𝑖 , for 𝑖 = 1, 2 . . . , 𝑛. The same relation may

appear more than once with attribute renamings (i.e., self-joins); we consider them as logical copies

of the same relation. We use 𝑹 = {𝑅1, · · · , 𝑅𝑛} to denote the set of all relations in the query, and

A = A1 ∪ A2 ∪ · · · ∪ A𝑛 the set of all attributes. For a subset of the relations S ⊆ 𝑹, let A(S) be
the attributes that appear in S; and define

¯A𝑖 = A(𝑹 − {𝑅𝑖 }), i.e., all attributes except those that
only appear in 𝑅𝑖 .

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:6 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

The original work of Yannakakis only considered a (distinct) projection 𝜋O after the multi-

way join. The extension to aggregations is made in [10, 42], who use semirings to formalize the

types of aggregations that can be supported. Let (S, ⊕, ⊗) be a communicative semiring, where

S is the ground set, with ⊕ and ⊗ being its “addition” and “multiplication”, respectively. Each

input tuple 𝑡 ∈ 𝑅𝑖 is associated with an annotation 𝑣𝑖 (𝑡) ∈ S. These annotations are propagated
through the join and projection, as follows. The annotation for any tuple 𝑡 in the join results

J = 𝑅1 (A1) Z 𝑅2 (A2) Z · · · Z 𝑅𝑛 (A𝑛) is the ⊗-aggregate of all the tuples, one from each

relation, that make up 𝑡 :

𝑣 (𝑡) :=
⊗

𝑅𝑖 (A𝑖) ∈Q
𝑣𝑖 (𝜋A𝑖

𝑡).

Then 𝜋O performs a ⊕-aggregation grouped by O, i.e., the annotation of each tuple 𝑡 in the final

query results is

𝑣 (𝑡) :=
⊕

∀𝑡 ′∈J,𝜋O𝑡 ′=𝑡
𝑣 ′ (𝑡 ′).

The attributes in O are called the output attributes. Specially, if O = ∅ and J ≠ ∅, then the query

returns the empty tuple ⟨⟩ associated with an annotation that aggregates all the join results:

𝑣 (⟨⟩) =
⊕
∀𝑡 ′∈J

𝑣 ′ (𝑡 ′).

If O = A (i.e., Q = J), then the query is called a full query, which does not perform any ⊕-
aggregation.

Such a conjunctive query with properly defined annotations is equivalent to the following SQL

query:

SELECT O, ⊕(𝑣1 ⊗ · · · ⊗ 𝑣𝑛)
FROM 𝑅1 NATURAL JOIN · · · NATURAL JOIN 𝑅𝑛

GROUP BY O;

Example 2.1. TPC-H Query 9 in Section 1 can be represented as the following conjunctive query

over the semiring (R, +, ·):
Q1 =𝜋𝑥1,𝑥2,𝑥8

((𝑅1 (𝑥1, 𝑥2, 𝑥3, 𝑥4) Z 𝑅2 (𝑥2, 𝑥5) Z 𝑅3 (𝑥3, 𝑥4)
Z 𝑅4 (𝑥3, 𝑥6) Z 𝑅5 (𝑥4, 𝑥7) Z 𝑅6 (𝑥7, 𝑥8))

where 𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5, 𝑅6 correspond to the relations lineitem, orders, partsupp, part,
supplier, and nation, respectively, while 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 correspond to the attributes

l_returnflag, orderkey, partkey, supplierkey, o_orderdate, p_name, nationkey, n_name.
Note that we have dropped unnecessary columns and renamed the join attributes to fit the natural

join syntax. For all tuples in 𝑅2, 𝑅4, 𝑅5, 𝑅6, their annotations are set to 1. For each tuple 𝑡 ∈ 𝑅3, set

𝑣 (𝑡) := ps_supplycost; for each tuple 𝑡 ∈ 𝑅1, set 𝑣 (𝑡) := l_quantity.

We have also omitted the selection operators 𝜎 , which can always be pushed down to the input

relations. They can be handled by a table scan or more efficiently by index retrieval if available,

which are issues orthogonal to this work. □

Note that this semiring formulation unifies most cases of the aggregation operator 𝛾 into 𝜋 . In

particular, projection can be considered as a special case of aggregation on the boolean semiring

({False, True},∧,∨), and all tuples in the database are assigned annotation True. By choosing the

semiring and annotations appropriately, this formulation incorporates a variety of aggregation

queries. For example, in addition to the commonly used (R, +, ·) in the above example, the semiring

(R, MAX, +) allows us to compute aggregations like MAX(ps_availqty − l_quantity) by setting

the annotations in 𝑅3 to ps_availqty and the annotations in 𝑅1 to −l_quantity.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:7

We will also make use of some other standard relational operators including selection, union,

semi-join, and order-by. These operators will not change the annotations of the tuples. In particular,

a semi-join 𝑅1 ⋉ 𝑅2 returns all the tuples in 𝑅1 that can join with at least one tuple in 𝑅2. Here,

the tuples in 𝑅1 retain their annotations in 𝑅1 after the semi-join, and the annotation in 𝑅2 are

irrelevant.

When analyzing the running time of an algorithm, we adopt the standard RAM model of

computation and consider the data complexity, i.e., the query size is taken as a constant. We will

measure the running time of a query evaluation algorithm using three parameters: the total input

size 𝑁 =
∑𝑛

𝑖=1
|𝑅𝑖 |, the query output size 𝑀 , and the full join size 𝐹 = |𝑅1 (A1) Z · · · Z 𝑅𝑛 (A𝑛) |.

Note that𝑀 = 𝐹 for a full query, but𝑀 could be much smaller than 𝐹 for a non-full query.

2.2 Classification of CQs

In the study of CQs, the following classes have been identified to bear complexity-theoretical

significance:

Acyclic CQs. There are many equivalent definitions for acyclic CQs, and we adopt the one based

on join trees [16, 26]. A CQ Q is acyclic if there exists a tree T satisfying the following properties:

(1) the set of nodes in T have a one-to-one mapping to the set of relations in Q; and (2) for each

attribute 𝑥 ∈ A, all nodes of T containing 𝑥 form a connected subtree of T . The join tree may

not be unique; the GYO algorithm [32, 73] can be used to decide whether a given query Q is

acyclic, and if yes, find all possible join trees for Q. Because of the one-to-one mapping between the

relations and the tree nodes, we may use these two terms interchangeably on a fix join tree T . For
a node/relation 𝑅𝑖 (A𝑖) in T , we often use 𝑅𝑝 (A𝑝) to denote its parent node, and C𝑖 its children.
Note that the acyclicity of a query does not concern its output attributes, which are instead

considered in the following sub-classes of acyclic CQs.

Free-connex CQs. A CQ Q is free-connex if both Q and Q Z [O] are acyclic, where [O] denotes
a relation with all output attributes [15]. This definition, however, is not easy to use in query

evaluation, since Q and Q Z [O] have different join trees. In this paper, we use the following

equivalent definition
3
that uses a single join tree.

Lemma 2.2. A CQ Q is free-connex if and only if it has a join tree T with a subtree T𝑛 containing
the root node that satisfies two conditions: (1) O ⊆ A(T𝑛), where A(T𝑛) represents the set of all
attributes present in T𝑛 , and (2) for any non-root node 𝑅(A) ∈ T𝑛 with parent 𝑅𝑝 (A𝑝),A ∩A𝑝 ⊆ O.
Such a T is called a free-connex join tree of Q, and T𝑛 is referred to as its connex subset.

In addition, we identify another sub-class of queries:

Relation-dominated CQs. A CQ Q is relation-dominated if Q is acyclic and there exists a relation

𝑅𝑖 (A𝑖) such that O ⊆ A𝑖 . We call 𝑅𝑖 (A𝑖) the dominating relation, and the join tree with 𝑅𝑖 (A𝑖) as
the root the relation-dominated join tree of Q. Note that for the special case O = ∅, the query is

dominated by any of its relations, and any of its join trees is a relation-dominated join tree.

Example 2.3. TPC-H Query 9 (Q1 in Example 2.1) is an acyclic query with two possible join trees

T1 and T2 shown in Figure 1(a) and Figure 1(b).

Q1 is not free-connex. But if we change the output attributes to O = {𝑥1, 𝑥2, 𝑥3, 𝑥5, 𝑥6}, then the

resulting query

Q2 ← 𝜋𝑥1,𝑥2,𝑥3,𝑥5,𝑥6

(
Z

𝑖∈[6]
𝑅𝑖

)
3
Due to space constraints, all proofs are given in the technical report [64].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:8 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

𝑅5(𝑥4, 𝑥7)

𝑅1(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑅3(𝑥3, 𝑥4)

𝑅4(𝑥3, 𝑥6)

𝑅2(𝑥2, 𝑥5)

𝑅6(𝑥7, 𝑥8)

(a) Join tree T1 for Q1

Connex

Subset
𝑅1(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑅5(𝑥4, 𝑥7)

𝑅6(𝑥7, 𝑥8)

𝑅3(𝑥3, 𝑥4) 𝑅4(𝑥3, 𝑥6) 𝑅2(𝑥2, 𝑥5)

(b) Free-connex join tree T2 for Q2, Q3

Fig. 1. Two possible join trees for Q1, Q2 and Q3. The output attributes are underlined.

is free-connex, with a free-connex join tree T2 shown in Figure 1(b). Note that T1 is not a valid
free-connex join tree for Q2 because the join attributes between 𝑅1 and 𝑅3 contain a non-output

attribute 𝑥4.

Furthermore, if we change the output attributes to O = {𝑥1}, then the query

Q3 ← 𝜋𝑥1

(
Z

𝑖∈[6]
𝑅𝑖

)
is relation-dominated, by picking 𝑅1 as the root of the join tree. □

2.3 The Yannakakis Algorithm

It is clear that all relation-dominated queries are free-connex queries, and all free-connex queries

are acyclic queries. Acyclic and free-connex queries are at the core in the theory of query evaluation:

All acyclic queries can be evaluated in𝑂 (min(𝑁𝑀, 𝐹)) time [72], while free-connex queries can be

evaluated in 𝑂 (𝑁 +𝑀) time [15]. Both running times are achievable by the Yannakakis algorithm,

which, on a given acyclic query Q with a join tree T , works as follows:

(1) Traverse the tree in the post-order; for each visited tree node 𝑅𝑖 and its parent node 𝑅𝑝 , replace

𝑅𝑝 with 𝑅𝑝 ⋉ 𝑅𝑖 ;
(2) Traverse the tree in the pre-order; for each visited non-leave node 𝑅𝑖 , for each 𝑅𝑐 ∈ C𝑖 , replace

𝑅𝑐 with 𝑅𝑐 ⋉ 𝑅𝑖 ;
(3) Traverse the tree in the post-order again; for each visited tree node 𝑅𝑖 , replace 𝑅𝑝 with(

𝜋A𝑝∪O𝑅𝑖
)
Z 𝑅𝑝 and remove 𝑅𝑖 from the tree.

(4) Until only one node 𝑅𝑟 on the join tree, output 𝜋O𝑅𝑟 as the query result.

Example 2.4. Using the join tree T1 in Figure 1(a), the Yannakakis algorithm yields the following

query plan for Q1:

(1) 𝑅1 ← 𝑅1 ⋉ 𝑅2;

(3) 𝑅1 ← 𝑅1 ⋉ 𝑅3;

(5) 𝑅5 ← 𝑅5 ⋉ 𝑅6;

(7) 𝑅1 ← 𝑅1 ⋉ 𝑅5;

(9) 𝑅4 ← 𝑅4 ⋉ 𝑅3;

(11) J1 ← 𝜋𝑥2
𝑅2 Z 𝑅1;

(13) J3 ← J1 Z J2;

(15) J5 ← J4 Z 𝑅6;

(2) 𝑅3 ← 𝑅3 ⋉ 𝑅4;

(4) 𝑅5 ← 𝑅5 ⋉ 𝑅1;

(6) 𝑅6 ← 𝑅6 ⋉ 𝑅5;

(8) 𝑅3 ← 𝑅3 ⋉ 𝑅1;

(10) 𝑅2 ← 𝑅2 ⋉ 𝑅1;

(12) J2 ← 𝜋𝑥3
𝑅4 Z 𝑅3;

(14) J4 ← 𝜋𝑥1,𝑥2,𝑥4
J3 Z 𝑅5;

(16) Q1 ← 𝜋𝑥1,𝑥2,𝑥8
J5. □

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:9

A linear complexity 𝑂 (𝑁 +𝑀) is clearly optimal; the optimality of the 𝑂 (min(𝑁𝑀, 𝐹)) bound
is still elusive, but it is nevertheless the best-known worst-case running time for acyclic but

non-free-connex CQs.

3 Yannakakis+

In this section, we describe Yannakakis
+
. For now, we assume that a join tree T (a free-connex join

tree for a free-connex CQ, and a relation-dominated join tree for a relation-dominated query) is

given; we will discuss how to pick a good join tree in Section 5.

3.1 First-round computation

Yannakakis
+
consists of two rounds. The first round performs a post-order traversal on T , as shown

in Algorithm 1.

Algorithm 1: First round post-order traversal

Input: A join tree T for the acyclic query Q on relations 𝑹
Output: A reduced join tree T ′ on relations 𝑹′

1 Let 𝑅1, · · · , 𝑅𝑛 be arranged in some post-order of T ;
2 foreach 𝑖 ∈ [𝑛 − 1] do
3 Let 𝑅𝑝 (A𝑝) be the parent node of 𝑅𝑖 (A𝑖) on T ;
4 if 𝑅𝑖 is a leaf node of T and A𝑖 ∩ O ⊆ A𝑝 then
5 𝑅𝑝 ← 𝑅𝑝 Z

(
𝜋A𝑝

𝑅𝑖

)
;

6 T ← T − {𝑅𝑖 }, 𝑹 ← 𝑹 − {𝑅𝑖 };
7 else
8 𝑅𝑖 ← 𝜋O∪ ¯A𝑖

𝑅𝑖 ;

9 𝑅𝑝 ← 𝑅𝑝 ⋉ 𝑅𝑖 ;

10 𝑅𝑛 ← 𝜋O∪ ¯A𝑛
𝑅𝑛 ;

11 return T , 𝑹

Below, we use three examples to illustrate how the first round works.

Example 3.1. First consider a simple query on two relations:

Q4 ← 𝜋𝑥1
(𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3)) .

Note that this query is relation-dominated, hence also free-connex, and the (only) free-connex join

tree has 𝑅1 as the root and 𝑅2 as the leaf.

The standard query plan used in most database systems for this query is

(1) J ← 𝑅1 Z 𝑅2; (2) return 𝑇 ← 𝜋𝑥1
J .

This plan takes 𝑂 (𝑁 + 𝐹) time; recall that 𝐹 = |𝑅1 Z 𝑅2 | is the full join size.

In contrast, the Yannakakis algorithm for this query achieves 𝑂 (𝑁 +𝑀) = 𝑂 (𝑁) time (since

𝑀 ≤ 𝑁 on this query), through the following plan:

(1) 𝑅1 ← 𝑅1 ⋉ 𝑅2; (2) 𝑅2 ← 𝑅2 ⋉ 𝑅1;

(3) 𝑅1 ← 𝑅1 Z 𝜋𝑥2
𝑅2; (4) return 𝑇 ← 𝜋𝑥1

𝑅1.

Algorithm 1 on this query yields the following plan:

(1) 𝑅1 ← 𝑅1 Z 𝜋𝑥2
𝑅2; (2) return 𝑇 ← 𝜋𝑥1

𝑅1 .

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:10 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

Because only one relation remains after the first-round computation, Yannakakis
+
terminates

without needing to do the second round. We see that the Yannakakis
+
plan is actually the same as

the last two steps in the Yannakakis plan. Essentially, the observation is that, for this query, the two

semi-joins are not necessary; doing the last two steps directly, even with the presence of dangling

tuples, still guarantees 𝑂 (𝑁) time, which we will prove more formally and generally later.

We ran the three query plans in DuckDB on the Epinion graph, where both 𝑅1 and 𝑅2 refer to

the edge relation with 508,837 edges (namely, it is a self-join). We use the (N, +, ·) smearing and

set all input tuples’ annotations to 1, so the query returns the number of length-2 paths for each

vertex 𝑥1. The standard plan took 0.507 s, the Yannakakis plan took 0.243 s, while our new plan

took 0.0366 s. □

Example 3.2. Next, consider Q2 from Example 2.3, which is free-connex but not relation-

dominated. This query has more than one free-connex join tree; in this example, we use T2 in Figure

1(b). Then Algorithm 1 yields the following steps:

(1) 𝑅5 ← 𝑅5 Z 𝜋𝑥7
𝑅6; (2) 𝑅1 ← 𝑅1 Z 𝑅3;

(3) 𝑅1 ← 𝑅1 Z 𝜋𝑥4
𝑅5; (4) 𝑅1 ← 𝑅1 ⋉ 𝑅2;

(5) 𝑅1 ← 𝑅1 ⋉ 𝑅4; (6) 𝑅1 ← 𝜋𝑥1,𝑥2,𝑥3
𝑅1.

The first three steps fall into the if part, since the output attributes in 𝑅3, 𝑅5, 𝑅6 also appear in

their parents. We do early aggregation and join for these relations, which are then removed. Steps

(4)–(5) take the else part that does the semi-joins. Note that line 8 in Algorithm 1 is a no-op in this

example. Step (6) performs the final aggregation of line 10 in Algorithm 1. We see Algorithm 1 has

reduced the query to a full join (which we will show is true for all free-connex queries):

Q′
2
← 𝑅1 (𝑥1, 𝑥2, 𝑥3) Z 𝑅2 (𝑥2, 𝑥5) Z 𝑅4 (𝑥3, 𝑥6),

and the reduced join tree T ′
2
is shown in Figure 2(b). □

𝑅5 (𝑥4, 𝑥7)

𝑅1 (𝑥1, 𝑥2, 𝑥4) 𝑅6 (𝑥7, 𝑥8)

(a) Join tree T′
1
for Q′

1
after the first round.

𝑅2 (𝑥2, 𝑥5)

𝑅1 (𝑥1, 𝑥2, 𝑥3)

𝑅4 (𝑥3, 𝑥6)

(b) Join tree T′
2
for Q′

2
after the first round.

Fig. 2. Two Jointrees for Q′
1
and Q′

2
.

Example 3.3. Finally, consider a non-free-connex query, Q1 from Example 2.1. Suppose we use

the join tree T1 in Figure 1(a). Then Algorithm 1 yields the following query plan:

(1) 𝑅1 ← 𝑅1 Z 𝜋𝑥2
𝑅2; (2) 𝑅3 ← 𝑅3 Z 𝜋𝑥3

𝑅4;

(3) 𝑅1 ← 𝑅1 Z 𝑅3; (4) 𝑅1 ← 𝜋𝑥1,𝑥2,𝑥4
𝑅1;

(5) 𝑅5 ← 𝑅5 ⋉ 𝑅1; (6) 𝑅5 ← 𝑅5 ⋉ 𝑅6;

and the reduced query is

Q′
1
← 𝜋𝑥1,𝑥2,𝑥8

𝑅1 (𝑥1, 𝑥2, 𝑥4) Z 𝑅5 (𝑥4, 𝑥7) Z 𝑅6 (𝑥7, 𝑥8)

with the join tree T ′
1
in Figure 2(a).

Compared with the free-connex Q2, some non-output attributes of Q1 remain, but Algorithm 1

did the best it can: The remaining attributes are either output attributes or join attributes (e.g., 𝑥4

and 𝑥7) that are “shielded” by the output attributes from below. □

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:11

Correctness. Wewill prove that the reduced query after the first round is equivalent to the original

query.

Lemma 3.4. On any acyclic query Q and its join tree T , Algorithm 1 produces a query Q′ that is
equivalent to Q.

Running time. We see that all the operators in the first-round computation has running time

𝑂 (𝑁), and none of them increases the data size. This is clearly the case for all semi-joins and

aggregations. Join is the only operator that may take more than linear time and enlarge the data

size, but the join done in line 5 of Algorithm 1 is between 𝑅𝑝 and 𝜋A𝑝
𝑅𝑖 , and the latter’s attribute

set is a subset of the former. This is thus essentially a semi-join if annotations are not concerned.

Since we are removing 𝑅𝑖 , we need to use a join here to make sure that the annotations in 𝜋A𝑝
𝑅𝑖

are correctly multiplied by those in 𝑅𝑝 .

Lemma 3.5. The worst-case running time of Algorithm 1 is 𝑂 (𝑁).

Properties of the reduced query. In addition to being equivalent to the original query, we can

prove the following properties of the reduced query Q′, which will be useful in the second round:

Lemma 3.6. For a given acyclic query Q, Algorithm 1 returns a reduced query Q′ that only has

(1) output attributes and join attributes;
(2) output attributes (i.e., Q′ is a full query) if Q is free-connex;
(3) one relation consisting of only output attributes if Q is relation-dominated.

Combining Lemma 3.5 and Lemma 3.6(3), we obtain an algorithm for relation-dominated queries.

Theorem 3.7. Algorithm 1 computes any relation-dominated query in 𝑂 (𝑁) time.

For other queries, we proceed to the second round.

3.2 Second-round computation

The second-round computation relies on the notion of dangling-free relations and reducible relations.

Definition 3.8 (Dangling-free Relations). Given a conjunctive query Q := 𝜋O
(
Z𝑘∈[𝑛] 𝑅𝑘

)
, a

relation 𝑅𝑖 is dangling-free if on every database instance, for every 𝑡 ∈ 𝑅𝑖 , there exists a full join
result 𝑡 ′ ∈Z𝑘∈[𝑛] 𝑅𝑘 such that 𝑡 = 𝜋A𝑖

𝑡 ′.

Lemma 3.9. For any acyclic query Q and any join tree T of Q, the root node 𝑅𝑟 of T after the first
round is dangling-free.

Definition 3.10 (Reducible Relations). Let Q be an acyclic CQ and T be a join tree of Q. Consider
a relation 𝑅𝑖 (A𝑖) ∈ T , and let 𝑅 𝑗 (A 𝑗) be a neighbor of 𝑅𝑖 . We say that 𝑅 𝑗 is reducible for 𝑅𝑖 if, for
every other neighbor 𝑅𝑘 (A𝑘) of 𝑅𝑖 , A𝑘 ∩ A𝑖 ⊆ O.

As example, in the join tree of Figure 1(b), 𝑅1 has only one reducible relation 𝑅3; 𝑅4 are 𝑅5 are

not reducible for 𝑅1, because 𝑅3 and 𝑅1 have a non-output join attribute 𝑥4.

The following two special cases will be useful later: (1) For any leaf node, its parent is always

reducible for it because it has no other neighbors. (2) In a full query, each node is reducible for all

of its neighbors.

The second round revolves around dangling-free relations and their reducibles, since their joins

have bounded size:

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:12 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

Lemma 3.11. Given an acyclic query Q and a join tree T for Q after the first round, let 𝑅𝑖 be
a dangling-free relation and 𝑅 𝑗 be a reducible relation for 𝑅𝑖 . Then |𝑅𝑖 Z 𝑅 𝑗 | = 𝑂 (min(𝑁𝑀, 𝐹)).
Furthermore, if ¯A 𝑗 ∩ A 𝑗 ⊆ O, then |𝑅𝑖 Z 𝑅 𝑗 | = 𝑂 (𝑀).

In the second round, we iteratively identify any dangling-free relation 𝑅𝑖 and one of its reducible

relations 𝑅 𝑗 , perform a join followed by a projection, and reduce the join tree by one relation,

as shown in Algorithm 2. In the algorithm, Δ represents symmetric difference, i.e., A𝑖ΔA 𝑗 =

(A𝑖 − A 𝑗) ∪ (A 𝑗 − A𝑖).
Algorithm 2: Reduction(Q,T , 𝑅𝑖 , 𝑅 𝑗)

Input: A join tree T for the acyclic query Q with relation 𝑹, where 𝑅 𝑗 is a reducible relation

of a dangling-free relation 𝑅𝑖
Output: A resulting join tree T ′ and a reduced query Q′ on relations 𝑹′

, where

|𝑹′ | = |𝑹 | − 1

1 T ′ ← T , 𝑹′ ← 𝑹;
2 𝑅′𝑖 ← 𝜋O∪(A𝑖ΔA 𝑗)

(
𝑅𝑖 Z 𝑅 𝑗

)
;

3 𝑹′ ←
(
𝑹′ − {𝑅𝑖 } − {𝑅 𝑗 }

)
∪ {𝑅′𝑖 };

4 In T , merge 𝑅𝑖 and 𝑅 𝑗 into 𝑅
′
𝑖 ;

5 Q′ := 𝜋O (Z𝑅∈𝑹′ 𝑅);
6 return Q′,T ′, 𝑹′

We need to show that a pair of dangling-free and reducible relations always exist, so that we

can repeatedly apply Algorithm 2. It is easy to show that dangling-free relations always exist. In

particular, the root of the join tree after the first round must be dangling-free (Lemma 3.9). Also,

the join of a dangling-free relation with any other relation must still be dangling-free, so the newly

generated relation 𝑅′𝑖 by Algorithm 2 is also dangling-free.

However, it is not clear if reducible relations always exist. We consider the following two cases

separately.

Free-connex queries. If Q is free-connex, then the query after the first round is full. By the

observation earlier, every relation is reducible to all its neighbors. Thus we can apply Algorithm

2 on the root 𝑅𝑟 and any of its child 𝑅 𝑗 . The newly generated relation is still dangling-free and it

becomes the new root. We can thus repeatedly apply Algorithm 2 until only one relation remains.

In terms of running time, observe that in a full query, the second part of Lemma 3.11 applies, so

the cost of each join is 𝑂 (𝑁 +𝑀). Combining with Lemma 3.5, we conclude:

Theorem 3.12. Algorithm 1 and 2 compute any free-connex query in 𝑂 (𝑁 +𝑀) time.

Example 3.13. We continue Example 3.2. After the first-round computation, the join tree is shown

in Figure 2(b), which is a full query. The root 𝑅1 is dangling-free, and both of its children 𝑅2 and 𝑅4

are reducible. Applying Algorithm 2 twice yields the following query plan (continuing the plan in

Example 3.2):

(7) 𝑅1 ← 𝑅1 Z 𝑅2; (8) Q ← 𝑅1 Z 𝑅4 . □

Non-free-connex queries. Although dangling-free relations must exist for non-free-connex queries

after the first round (at least, the root of T is one), but they may not have any reducible neighbors.

In this case, we use semi-joins to make additional relations dangling-free, based on the following

lemma:

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:13

Lemma 3.14. For any acyclic query Q, let T be the join tree after the first-round computation. Let
𝑅𝑖 be any dangling-free relation in T , and 𝑅 𝑗 be any child of 𝑅𝑖 . If we replace 𝑅 𝑗 with 𝑅′𝑗 := 𝑅 𝑗 ⋉ 𝑅𝑖 ,
then the query is equivalent while 𝑅′𝑗 is dangling-free for Q.

As observed earlier, when a leaf becomes dangling-free, its parent must be reducible, so this

strategy can always succeed in finding a pair of relations to apply Algorithm 2.

Example 3.15. We continue Example 3.3. The join tree is shown in Figure 2(a) after the first round.

The root 𝑅5 is dangling-free, but neither of its children is reducible. Then we can use a semi-join to

make 𝑅6 dangling-free, and then apply Algorithm 2 to merge 𝑅5 and 𝑅6. After this, 𝑅1 becomes the

only neighbor of 𝑅5, hence reducible. The query plan is (continuing the plan in Example 3.3):

(7) 𝑅6 ← 𝑅6 ⋉ 𝑅5; (8) 𝑅5 ← 𝜋𝑥4,𝑥8
(𝑅5 Z 𝑅6) ;

(9) Q1 ← 𝜋𝑥1,𝑥2,𝑥8
(𝑅5 Z 𝑅1) .

Compared with the original Yannakakis plan (Example 2.4), we see that our plan uses only 3

semi-joins as opposed to 10, and 3 aggregation-join operations have been pushed to before the

semi-joins. We ran the three plans in DuckDB on the 5-copy SF=100 TPC-H dataset, DuckDB’s

plan took 488 s, the original Yannakakis plan took 21.1 s, while our new plan took 13.2 s. □

Finally, we can show that our algorithm achieves the same running time guarantee as that of the

Yannakakis algorithm for acyclic but non-free-connex queries:

Theorem 3.16. Algorithm 1 and 2 compute any acyclic query in 𝑂 (min(𝑁𝑀, 𝐹)) time.

4 GeneralQueries

4.1 CyclicQueries

Our previous discussions were based on acyclic CQs with a join tree. For cyclic CQs, Generalized
Hypertree Decomposition (GHD) [11, 30] is a powerful tool for efficiently transforming them

into acyclic CQs. A GHD also takes the form of a tree T , whose nodes are often called bags. But
unlike the join tree for acyclic queries that maps each node to a single relation, each node Bag𝑗 of
T maps to a set of attributes B𝑗 , where (1) for every relation 𝑅𝑖 (A𝑖), there exists a node Bag𝑗 such
that A𝑖 ⊆ B𝑗 and (2) for each attribute 𝑥 , all nodes of T containing 𝑥 form a connected subtree of

T . Such a tree T is called a generalized join tree, and we said the tree is generalized free-connex join
tree if it also satisfies the free-connex condition. Each bag [B] can be materialized by the following

query:

QB ←Z𝑅 (A)∈𝑹,A⊆B≠∅ (𝑅) . (2)

It should be noted that each relation can appear in multiple bags. In order to prevent miscalculations

of the aggregate value, we create a special relation 𝑅1
𝑖 for each 𝑅𝑖 ∈ R. For each 𝑡 ∈ 𝑅𝑖 , we add 𝑡

to 𝑅1
𝑖 with the annotation 𝑣 (𝑡) = 1. Then, we replace 𝑅𝑖 with 𝑅1

𝑖 for all bags except for one with

A𝑖 ⊆ B.
In order to evaluate a CQ Q on the given generalized join tree T , we start by materializing

each bag [B]. This involves evaluating QB directly in the database with a binary join plan (or

WCOJ if available) and then replacing the bag with the materialized relation 𝑅B . Our cost-based
optimization further improves the pre-processing by selecting the best join orders for the binary

join plan. Once this process is complete, the resulting tree becomes a normal join tree and can be

evaluated directly using Yannakakis
+
.

In this work, we adopt a similar approach to the previous state-of-the-art [8], which exhaustively

explores all possible generalized hypertree decompositions (GHDs). Our cost-based optimizer

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:14 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

enhances the efficiency of GHD search by employing our cost estimator to obtain more accurate

results than the standard search algorithms that rely on heuristics. Additionally, when calculating

the size of each GHD bag, we take cardinality constraints into account. For example, if a bag

contains relations 𝑅1 (𝑥1, 𝑥2) and 𝑅2 (𝑥2, 𝑥3), where 𝑥2 is a primary key for 𝑅2, we conceptually

merge them into a new relation 𝑅12 (𝑥1, 𝑥2, 𝑥3) with |𝑅12 | = |𝑅1 |. This approach provides a more

accurate cost estimation, allowing our optimizer to select the most efficient GHD.

𝑥1

𝑥2

𝑥3 𝑥4

𝑥5

𝑥6

𝑅1

𝑅3

𝑅2

𝑅6

𝑅5

𝑅7

𝑅4

𝐵1

𝐵2

𝐵3

(a) Generalized Hypertree Decomposition

𝑅𝐵1
(𝑥1, 𝑥2, 𝑥3)

𝑅𝐵2
(𝑥3, 𝑥4)

𝑅𝐵3
(𝑥4, 𝑥5, 𝑥6)

(b) Join tree

Fig. 3. An Example of GHD and its acyclic CQ.

Example 4.1. See Figure 3(a) as an example of GHD on a natural join of 7 relations: 𝑅1 (𝑥1, 𝑥2),
𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥3, 𝑥1), 𝑅4 (𝑥3, 𝑥4), 𝑅5 (𝑥4, 𝑥5), 𝑅6 (𝑥5, 𝑥6) and 𝑅7 (𝑥6, 𝑥4). There are three bags in the

decomposition:

𝑅B1
← 𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z 𝑅3 (𝑥3, 𝑥1);

𝑅B2
← 𝑅4 (𝑥3, 𝑥4);

𝑅B3
← 𝑅5 (𝑥4, 𝑥5) Z 𝑅6 (𝑥5, 𝑥6) Z 𝑅7 (𝑥6, 𝑥4).

After performing two triangle joins (𝑅B1
and 𝑅B3

) we get an acyclic join (line-3 join) as Figure 3(b).

The tree can be evaluated in a total time of𝑂 (𝑁 1.5+𝑀) with worst-case optimal joins, or𝑂 (𝑁 2+𝑀)
in most industrial database systems.

4.2 Sub-queries, Unions, Differences, and Top-k

The support for other operations in DBMS on our newly developed algorithm is natural by consid-

ering the underlying conjunctive query as a special relation. The evaluation and materialization

of the underlying conjunctive query can be done by using the new algorithm. Then, additional

operators can be applied to the query results by replacing the conjunctive queries with the new

relation.

Example 4.2. Consider the TPC-H Benchmark Query 17:

SELECT SUM(l_extendedprice) / 7.0 as avg_yearly

FROM lineitem, part

WHERE p_partkey = l_partkey and p_brand = 'Brand#23' and p_container = 'MED BOX' and

l_quantity < (

SELECT 0.2 * avg(l_quantity) FROM lineitem WHERE l_partkey = p_partkey);

which is a nested query. To evaluate the nested query, our framework will first evaluate the

underlying conjunctive query

SELECT 0.2* avg(l_quantity) as cnt FROM lineitem, part

WHERE p_partkey = l_partkey and p_brand = 'Brand#23' and p_container = 'MED BOX';

then using the query result 𝑅𝑄 as a new input relation, and evaluate another conjunctive query

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:15

SELECT SUM(l_extendedprice) / 7.0 as avg_yearly

FROM lineitem, part, 𝑅𝑄

WHERE p_partkey = l_partkey and p_brand = 'Brand#23' and p_container = 'MED BOX' and

l_quantity < cnt;

While this allows our algorithm to support universal SQL queries and our algorithm can guarantee

an output-sensitive running time when evaluating the conjunctive queries, we cannot guarantee an

output-sensitive running time for the entire query as the output size of these conjunctive queries

can be significantly larger than the final size of the query results. Recent advances have shown that

we can push down unions[21], differences[40], and Top-k[66] while evaluating those conjunctive

queries. As a natural aspect of relational algorithms, our framework can be extended to support

all these queries with additional rewrite steps and only add a constant or logarithmic cost to the

complexity.

Example 4.3. Consider the following difference of conjunctive query (DCQ) studied in [40]:

𝜋𝑥4
(𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3, 𝑥4) − 𝑅3 (𝑥1, 𝑥2, 𝑥3) Z 𝑅4 (𝑥3, 𝑥4)) ,

One way to evaluate the query is by first evaluating the two queries, 𝑅1 Z 𝑅2 and 𝑅3 Z 𝑅4, and

then calculating the difference between the two queries and performing the projection. However,

it is possible that the final result is empty, even though the two conjunctive queries can produce

𝑂 (𝑁 2) results in the worst case. By using the techniques introduced in [40], we can rewrite the

process as follows:

𝜋𝑥4
(𝑅1 Z 𝑅2 − 𝑅3 Z 𝑅4)

=𝜋𝑥4

((
𝑅1 − 𝜋𝑥1,𝑥2

𝑅3

)
Z 𝑅2

)
∪ 𝜋𝑥4

(
𝑅1 Z

(
𝑅2 −

(
𝜋𝑥2,𝑥3

𝑅3

)
Z 𝑅4

))
,

and (
𝑅2 −

(
𝜋𝑥2,𝑥3

𝑅3

)
Z 𝑅4

)
=𝑅2 ⋉

(
𝜋𝑥2,𝑥3

𝑅2 − 𝜋𝑥2,𝑥3
𝑅3

)
∪ 𝑅2 ⋉

(
𝜋𝑥3,𝑥4

𝑅2 − 𝑅4

)
where each individual query’s output size is bounded by the actual output size of the DCQ. With

Yannakakis
+
, those queries can be evaluated in 𝑂 (𝑁 + 𝑀) time, where 𝑀 represents the actual

output of the DCQ.

5 Query Optimization

Yannakakis
+
provides the same asymptotic running time guarantee with any valid join tree (free-

connex join tree, or relation-dominated join tree, respectively). However, there are still constant-

factor differences between these join trees; even for the same join tree, different reduction orders

during the two rounds of computations can also make some differences.

Example 5.1. Consider Q1 from Example 2.1, where the new query plan, using the join tree

T1, significantly improves the performance compared with the original query plan in DuckDB.

However, our query optimizer can find a better join tree T3 by simply rotating the tree with 𝑅1 as

the root node, as shown in Figure 5. Despite the small changes to the join tree, the new query plan

reduces the total intermediate results from 556,473,531 to 242,661,000 and eliminates one semi-join

step in the second round of computation. The resulting running time on T3 is 6.800 s, which is

approximately 49% less compared to the plan on T1. □

Thus, it is practically important to choose an optimal (or near-optimal) query plan from this

family of plans. We have designed a query optimizer tailored for Yannakakis
+
, which consists of a

rule-based component and a cost-based component, described below.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:16 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

𝑅1 (𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑅3 (𝑥3, 𝑥4)

𝑅4 (𝑥3, 𝑥6)

𝑅5 (𝑥4, 𝑥7)

𝑅6 (𝑥7, 𝑥8)

𝑅2 (𝑥2, 𝑥5)

Fig. 5. Join tree T3 for Q1.

𝑅3 (𝑥3, 𝑥
′
4
)

𝑅2 (𝑥2, 𝑥3, 𝑥8)

𝑅1 (𝑥1, 𝑥2)

𝑅5 (𝑥1, 𝑥4)

𝑅4 (𝑥4, 𝑥5, 𝑥6)

𝑅6 (𝑥6, 𝑥7)

Fig. 6. Join tree for Q′
5
.

5.1 Rule-Based Optimization

Cycle Elimination. Yannakakis
+
is designed to process acyclic queries and use GHD to transform

cyclic queries into acyclic with extra cost. However, some queries, although cyclic, can be turned

into acyclic without affecting the running time by exploiting the PK constraints.

Example 5.2. TPC-H query 5 can be represented as the following conjunctive query

Q5 ←𝜋𝑥5
𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3, 𝑥8) Z 𝑅3 (𝑥3, 𝑥4)
Z 𝑅4 (𝑥4, 𝑥5, 𝑥6) Z 𝑅5 (𝑥1, 𝑥4) Z 𝑅6 (𝑥6, 𝑥7),

where all primary keys are marked as 𝑥 . The query is not acyclic due to the cycle created by

𝑅1, 𝑅2, 𝑅3, 𝑅5. We break the cycle by renaming one of the 𝑥4’s into 𝑥
′
4
, but then reinforcing it by a

selection:

Q′
5
←𝜎𝑥4=𝑥

′
4

(
𝜋𝑥5,𝑥4,𝑥

′
4

𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3, 𝑥8) Z 𝑅3 (𝑥3, 𝑥
′
4
)

Z 𝑅4 (𝑥4, 𝑥5, 𝑥6) Z 𝑅5 (𝑥1, 𝑥4) Z 𝑅6 (𝑥6, 𝑥7)
)
.

Now the query (before the selection 𝜎𝑥4=𝑥
′
4

) is acyclic, with a join tree shown in Figure 6. Meanwhile,

since all joins are PK-FK joins, all intermediate join sizes are bounded by 𝑂 (𝑁), so the overall

running time is still 𝑂 (𝑁), including the last selection step 𝜎𝑥4=𝑥
′
4

. □

Aggregation Elimination. The PK constraint (in fact, any UNIQUE constraint) can help remove

some redundant aggregations. When the group-by attribute is a PK, the aggregation can be elimi-

nated, i.e., line 5 and 9 in Algorithm 1.

Semi-join Elimination. For a leaf relation 𝑅 and its parent node 𝑅𝑝 on the join tree, if the join

key is a primary key of 𝑅 and foreign key of 𝑅𝑝 , and there is no filtering condition on 𝑅, then the

semi-join step between 𝑅 and 𝑅𝑝 can be ignored. This is because the PK-FK relationship already

ensures that all tuples can be joined.

Example 5.3. Consider the query Q1 from Example 3.3. In the first round, 𝑅2 was projected to 𝑥2

before joining with 𝑅1 to avoid duplication. However, if 𝑥2 is a primary key of 𝑅2, the projection is

unnecessary. In addition, if the PK-FK relationship holds between 𝑅5 and 𝑅6, the semi-join in Step

(1) and Step (7) can be omitted without increasing the complexity.

Pruning for Annotation. In Section 2, the definition of conjunctive queries requires an additional

annotation column for each relation to support the calculation of aggregation functions. This helps

to generalize the definition to accommodate various aggregations. However, in some cases, this

annotation may be redundant, but our optimizer is designed to identify these cases and avoid the

additional cost. Our experiments demonstrate the importance of this optimization for database

systems with column-store.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:17

Example 5.4. Consider the query from Example 2.1. If we change the corresponding aggregation

function from SUM to MAX on ps_supplycost ∗ l_quantity to obtain the maximum cost, the query

will be defined over the semiring (R,max, ·). In this case, we won’t need to assign additional

annotations on relations except for Partsupp and Lineitem. Our optimizer detects such situations

and eliminates those annotations from our plan.

Fusion of Dimension Relations. When a query involves joins between a large relation and multiple

small relations, the optimizer can enhance efficiency by first join the small relations, or even using

Cartesian products if they lack common attributes. This is because join or semi-join with the large

relation can be more costly than performing a Cartesian product of the small relations. For example,

in the query 𝑅1 (𝑥1) Z 𝑅2 (𝑥1, 𝑥2) Z 𝑅3 (𝑥2), if |𝑅1 | and |𝑅3 | are significantly smaller than |𝑅2 |, we
first perform the Cartesian product 𝑅1 × 𝑅3. Then, we apply our new query plan, which saves one

join or semi-join with the large relation 𝑅2.

5.2 Cost-Based Optimization

Cost-based optimization in database systems is a key technique for enhancing query performance

and resource usage. Our new algorithms specifically focus on the efficiency of a query plan within

the algebraic structure. For all valid join trees, they have the same theoretical worst-case complexity.

Therefore, it’s important for us to take into account instance-specific information in order to identify

the best query plan among all available options. In contrast to the standard binary join approach,

which may not perform well due to the amplification of errors by join operations, operators like

semi-join have a bounded cost that does not amplify errors. Additionally, the linear time guarantee

provides an upper bound on the cost estimation. These factors make the standard cost-based

optimization more effective for our new query plans.

Plan Enumeration (PE). The first step in plan enumeration is to generate all valid join trees for

the given query. For acyclic queries, we use GYO reduction [32, 73] to enumerate all valid join trees.

However, for cyclic hypergraphs, directly applying GYO reduction cannot reduce the query to an

empty graph. Therefore, we compute all possible generalized hypertree decompositions (GHDs)

[31].

After generating a set of valid plans, we employ the following pruning strategies to control their

number:

• For queries with output attributes, we require the root node to contain output attributes;

• We prefer plans where the larger relations are at the top of the tree;

• Unlike current database optimizers that tend to favor left-deep plans, we prioritize bushy plans

with lower heights.

These rules help avoid additional costs when propagating large relations through intermediate

results and make it easier for child nodes to prune their parent nodes.

Cardinality Estimation (CE) and Cost Model (CM). Estimating the cardinality of intermediate

results in a query plan has been extensively studied in the literature. Thanks to their theoretical

guarantee, the Yannakakis
+
plans are less sensitive to CE/CM than traditional plans. Bad CE/CM

leads to at most a constant-factor difference for Yannakakis
+
, while they may incur a polynomial-

factor degradation for traditional plans, from 𝑂 (𝑁) to 𝑂 (𝑁 2) or even worse. We used the standard

CE and CM methods to ensure the best database engine compatibility and fair comparison, while

better CE/CMmay further improve the performance of Yannakakis
+
. We first collect basic statistical

information from the base tables, including their size, the number of distinct values, the quantiles,

etc. Then, during query optimization, we estimate the join size, projection size, and selectivity

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:18 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

of selection predicates using some classical methods [34, 36, 45, 56, 61]. Finally, we convert the

cardinality estimates into an estimate of the actual running time using a standard cost model.

6 System implementation

Fig. 8. System Architecture

We have developed a prototype system implementing our algorithms, which consists of two

main components: the planner and the optimizer. Figure 8 illustrates the architecture of our system.

The planner accepts SQL queries and the database schema via REST APIs. Each input query first

undergoes syntax validation using a built-in SQL parser based on Apache Calcite [17]. After

validation, the query is transformed into a tree of relational operators. The planner then applies

optimizations where appropriate, such as cycle elimination. Next, it builds the hypergraph and

generates candidate join trees using the techniques described in Section 5.2. For free-connex queries,

each candidate join tree is associated with a subtree T𝑛 , representing the connex subset.

Upon receiving the candidate join trees, the optimizer uses a built-in cost model, along with

statistics from the DBMS, to select the optimal join tree. In practice, the planning and optimization

steps can be completedwithin 100milliseconds. For complex queries that require longer optimization

times, our system can choose to skip planning and optimization steps and directly use the join tree

provided by the DBMS for the subsequent rewrite step, thereby balancing optimization time and

query execution time.

For the rewrite step, our system employs the algorithm described in Section 3 to generate a

series of equivalent intermediate representations (IRs) as instructions. Depending on the target

DBMSs, the instructions are further converted into executable SQL queries. This design decouples

our system from the underlying DBMSs, improving its portability. To support a new target DBMS,

only the conversion from rewritten instructions to SQL statements is required. This also allows us

to leverage some features of a specific DBMS for tailored performance optimization, enhancing

runtime performance. For example, in DuckDB, we utilize temporary views to store the intermediate

results of our plan, a method that allows it to follow our algorithm while introducing minimal

overhead. Each of the generated SQL statements in our plan is atomic and cannot be further

optimized or rewritten. We also verified in the experiments that all these systems executed the

given plans as instructed.

Our prototype is available at [7], currently supporting DuckDB [1], PostgreSQL [3], DBMS X (a

commercial column-oriented database optimized for analytical processing), and SparkSQL [5].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:19

7 Experimental Evaluation & Analysis

7.1 Experimental Setup

Experimental Environment. Experiments for DuckDB and PostgreSQL were conducted on a

machine with an Intel Xeon Gold 6354 CPU @ 3.00GHz (36 cores, 72 threads), 1TB RAM, running

Ubuntu 20.04. The software versions used were DuckDB 1.0 and PostgreSQL 16.2. Spark experiments

were performed on a machine with an Intel Xeon Silver 4116 CPU @ 2.10GHz (24 cores, 48 threads),

192GB RAM, running AlmaLinux 9.4, using Spark 3.5.1 with Java 1.8.0.

Each query was executed 10 times on each database engine, and we reported the median running

time, including both optimization and execution time. I/O time is excluded from the running time.

Before running a query, we warm up the database and read all required relations into the memory.

A two-hour time limit was set for the SGPB and LSQB benchmarks, and a 30-minute limit for

the TPC-H and JOB benchmarks. All systems were used with default configurations, utilizing all

available resources: 72 threads for DuckDB and PostgreSQL, and 48 threads for SparkSQL.

Datasets, Queries, and Benchmarks. We assessed our algorithms using a variety of benchmarks

covering graphs, social networks, and relational data to ensure a comprehensive evaluation across

different data complexities and join types. All SQL queries used in our evaluation are available in

our repository [7].

• Sub-Graph Pattern Benchmark (SGPB). We designed queries over diverse graph datasets

from the Stanford Network Analysis Project (SNAP) [4], including bitcoin, epinions, dblp, google,
and wiki, containing 24K to 28M edges. These datasets provide a robust test for graph query

performance.

• LSQB. The LSQB Benchmark [49], derived from the LDBC Social Network Benchmark (LDBC-

SNB) [13], focuses on complex queries involving numerous joins typical in social network analysis.

We evaluated all nine queries using a scale factor of 30.

• TPC-H. TPC-H [6] is an industry-standard benchmark simulating decision support systems with

large data volumes and complex queries addressing critical business questions. We conducted

experiments using a scale factor of 100.

• JOB. The Join Order Benchmark (JOB) [45] comprises 113 analytical queries over the Internet

Movie Database (IMDB) dataset [2]. To illustrate performance improvements, we scaled the

dataset by enlarging each table 10 to 100 times its original size.

• CEB. The Cardinality Estimation Benchmark (CEB) [52, 53] is a benchmark consisting of millions

of SQL queries, designed to test the performance of query optimization. It primarily features

two workloads: IMDB and StackExchange. Similarly, we have scaled the dataset to 10 times its

original size.

For all benchmarks, we focused on evaluating conjunctive queries with aggregations. We omitted

operations like LIMIT or ORDER BY and replaced anti-joins or outer joins with inner joins to

standardize the query patterns.

7.2 Results

7.2.1 Running Time Comparison. Figures 9 present the running times and relative speedups of

our query rewriter across four benchmarks—SGPB, LSQB, TPC-H, and JOB—evaluated on DuckDB,

AnalyticDB, PostgreSQL, and SparkSQL. All bars reaching the axis boundary indicate that the

system either exceeded the time limit or encountered memory issues. All the raw experimental

results available in our code repository [7].

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:20 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

q1a-epinions q1b-epinions q1c-epinions q2a-bitcoin q2b-bitcoin q3a-epinions q3b-epinions q3c-epinions q4a-epinions
SGPB

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

Ru
nn

in
g

Ti
m

e
(S

ec
)

DuckDB native
PostgreSQL native

DuckDB Yannakakis
PostgreSQL Yannakakis

DuckDB Yannakakis +

PostgreSQL Yannakakis +
AnalyticDB native
SparkSQL native

AnalyticDB Yannakakis
SparkSQL Yannakakis

AnalyticDB Yannakakis +

SparkSQL Yannakakis +

q1a-epinions q1b-epinions q1c-epinions q2a-bitcoin q2b-bitcoin q3a-epinions q3b-epinions q3c-epinions q4a-epinions
SGPB

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

Ru
nn

in
g

Ti
m

e
(S

ec
)

q4b-epinions q5a-epinions q5b-epinions q5a-google q5a-dblp q6-epinions q7-epinions q8-epinions q9-epinions
SGPB

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

Ru
nn

in
g

Ti
m

e
(S

ec
)

q1 q2 q3 q4 q5 q6 q7 q8 q9
LSQB

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

Ru
nn

in
g

Ti
m

e
(S

ec
)

q2 q3 q4 q5 q7 q8 q9 q10 q11
TPC-H

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

Ru
nn

in
g

Ti
m

e
(S

ec
)

q12 q14 q15 q16 q17 q18 q19 q20
TPC-H

1.0e+00

1.0e+01

1.0e+02

1.0e+03

1.0e+04

Ru
nn

in
g

Ti
m

e
(S

ec
)

q1 q2 q3 q4 q5
CEB

1.0e+00

1.0e+01

1.0e+02

Ru
nn

in
g

Ti
m

e
(S

ec
)

Fig. 9. Running times of DuckDB,
AnalyticDB, PostgreSQL, SparkSQL

We first observe that, for the Yannakakis query plans, although they can significantly improve

performance by orders of magnitude on queries like SGPB-q4b (35.83x) or SGPB-q5b (1071.78x),

they yield significant performance drawbacks on plenty of queries. Especially for queries with

PK-FK joins, when executing the Yannakakis plan on the JOB, most queries run slower than their

native query plans. Such performance matches the previous observations [29, 54], and the limited

improvements are due to (1) The overhead introduced by splitting queries into multiple SQL

statements and creating temporary views offsets potential gains. (2) Primary key–foreign key

(PK-FK) constraints resulting in intermediate result sizes of 𝑂 (𝑁), matching the time complexity

of the Yannakakis algorithm and leaving little room for optimization.

On the other hand, we observe significant performance improvement in our Yannakakis
+
plan. In

the total 162 test queries across all platforms/benchmarks, we can achieve performance improvement

over 160 queries compared with the native query plans, with an average of 2.4x and a maximum of

47,059x improvement. The performance drawbacks are limited, with 12.75% additional running time

at most on the test queries. In addition, we achieved performance improvement over all queries

compared with the Yannakakis query plans, with an average of 2.74x and a maximum of 156.03x

improvement. The detailed results are:

• Sub-Graph Pattern Benchmark (SGPB). Our rewriter significantly enhances performance

across all systems on the SGPB benchmark. In DuckDB, we achieve a maximum speedup of

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:21

1a 2b 3c 5b 6d 7c 9a 10b 11d 13b 14c 16a 17b 18a 19c 21a 22c 24a 26a 27c 29b 31a 33a
DuckDB

1/16

1/4
1/2

1
2
4

16

Sp
ee

du
p

Yannakakis speedup Yannakakis + speedup Yannakakis + speedup exceeds 16

1a 2b 3c 5b 6d 7c 9a 10b 11d 13b 14c 16a 17b 18a 19c 21a 22c 24a 26a 27c 29b 31a 33a
DuckDB

1/16

1/4
1/2

1
2
4

16

Sp
ee

du
p

1a 2b 3c 5b 6d 7c 9a 10b 11d 13b 14c 16a 17b 18a 19c 21a 22c 24a 26a 27c 29b 31a 33a
AnalyticDB

1/16

1/4
1/2

1
2
4

16

Sp
ee

du
p

1a 2b 3c 5b 6d 7c 9a 10b 11d 13b 14c 16a 17b 18a 19c 21a 22c 24a 26a 27c 29b 31a 33a
PostgreSQL

1/16

1/4
1/2

1
2
4

16

Sp
ee

du
p

1a 2b 3c 5b 6d 7c 9a 10b 11d 13b 14c 16a 17b 18a 19c 21a 22c 24a 26a 27c 29b 31a 33a
SparkSQL

1/16

1/4
1/2

1
2
4

16

Sp
ee

du
p

Fig. 10. Speedup achieved by different DBMS on JOB Benchmark.

47,059x and an average of 194x over the native plans. AnalyticDB shows a maximum speedup

of 6,606x with an average of 29x, PostgreSQL reaches up to 9,600x with an average of 107x,

and SparkSQL records a maximum of 89x and an average of 2.7x. These results highlight the

effectiveness of our rewrite algorithm, especially in analytical processing systems like DuckDB.

• LSQB (Scale Factor 30). The rewriter provides substantial speedups on the LSQB benchmark.

DuckDB experiences a maximum speedup of 2,391x and an average of 14x. AnalyticDB achieves

up to 1,016x with an average of 9x, PostgreSQL sees a maximum of 67x and an average of 7x,

while SparkSQL records a maximum of 538x with an average of 18x. Notably, several native

query plans exceeded time limits or failed due to memory constraints; post-optimization, these

queries were completed successfully, particularly Q8 and Q9.

• TPC-H (Scale Factor 100). Although the PK-FK constraints on the benchmark also limit the

improvement of the new rewriting approach, it is still able to achieve some performance gains

and avoid running time drawbacks by optimizing the number of rewritten queries and the query

plan for PK-FK joins. DuckDB shows a maximum speedup of 1.33x with an average of 1.06x.

AnalyticDB reaches up to 3.93x with an average of 1.20x, PostgreSQL has a maximum of 1.75x

and an average of 1.08x, and SparkSQL records a maximum of 1.09x with an average of 1.02x. In

addition, our rewrite query plan has at most 12.75% performance drawbacks.

• JOB. The rewriter’s performance on the Join Order Benchmark (JOB) is mixed. DuckDB achieves

a maximum speedup of 14.84x with an average of 1.42x. AnalyticDB reaches up to 94.50x and

averages 2.71x, PostgreSQL shows a maximum of 12.31x with an average of 1.40x, and SparkSQL

records a maximum of 2.30x and an average of 1.11x. In addition, to provide deeper insights,

Table 2 presents statistical analyses of the running times for all 113 queries in the JOB benchmark,

which indicate significant improvements across various statistical measures.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:22 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

• CEB.Given the vast number of queries, we selected 5 queries for testing. Notably, the experimental

results for DuckDB reach a maximum 5.03x speedup and an average speedup of 3.33x. For

PostgreSQL, the maximum speedup was 2.65x, and the average speedup was 1.54x.

Table 2. JOB Statistics

Method (s) Max Mean Med. Std.Dev.

DuckDB native 933.73 53.02 40.72 113.47

DuckDB Yannakakis 262.67 45.08 44.42 33.17

DuckDB Yannakakis
+

67.48 30.12 28.32 20.50

AnalyticDB native 1282.22 106.13 59.78 194.39

AnalyticDB Yannakakis 1468.3 226.19 175.51 220.85

AnalyticDB Yannakakis
+

110.28 31.66 19.01 29.72

PostgreSQL native 1289.29 82.66 56.36 147.97

PostgreSQL Yannakakis 422.49 113.52 92.81 89.19

PostgreSQL Yannakakis
+

144.16 50.55 43.56 35.68

SparkSQL native 539.37 268.37 201.71 159.64

SparkSQL Yannakakis 1145.17 544.72 430.47 328.92

SparkSQL Yannakakis
+

521.33 207.56 170.81 156.95

Table 3. Rule-based Optimization: PK-FK & Annot

JOB-1a (s) Base Primitive PK-FK Annot PK-FK & Annot

DuckDB 4.36 29.68 4.51 27.97 3.59

PostgreSQL 7.55 29.18 9.56 14.60 6.95

JOB-4a (s) Base Primitive PK-FK Annot PK-FK & Annot

DuckDB 12.76 32.31 4.28 31.25 4.08

PostgreSQL 10.87 29.11 7.13 28.18 6.72

Table 4. Running Times Under Different Cardinality
Estimation Scenarios

JOB-2b (s) native accurate estimated worst-case bounds

DuckDB 5.14 4.28 5.10 22.13

PostgreSQL 28.27 10.70 12.82 16.75

JOB-8b (s) native accurate estimated worst-case bounds

DuckDB 23.60 22.74 23.38 38.00

PostgreSQL 92.19 59.86 85.97 97.32

JOB-11d (s) native accurate estimated worst-case bounds

DuckDB 58.58 5.42 7.77 228.21

PostgreSQL 20.06 7.26 10.91 50.10

JOB-17c (s) native accurate estimated worst-case bounds

DuckDB 39.20 16.24 20.46 35.90

PostgreSQL 72.45 69.73 70.30 377.29

JOB-27b (s) native accurate estimated worst-case bounds

DuckDB 41.49 40.46 41.40 53.81

PostgreSQL 38.85 21.72 38.30 79.3

7.2.2 Effectiveness of the Rule-based Optimization. We conducted ablation experiments

to test the effects of two rules: PK-FK projection elimination and pruning for annotation. We

select 1a and 4a query from the JOB benchmark, where base represents the effect without any
rewrite, primitive represents the result without both rewrite rules, PK-FK represents the effect with

only projection elimination, Annot represents the effect with only pruning for annotation, and

PK-FK & Annot represents the combined effect of both optimizations. We test the experimental

performance under two DBMSs and find that applying both optimizations simultaneously yields

excellent experimental results, as shown in Table 3.

7.2.3 Effectiveness of Cardinality Estimation. To test our cost-based optimizer, we evaluate

the impact of cardinality estimation accuracy on query performance under three scenarios:

• Accurate Cardinality: The optimizer uses exact sizes for all intermediate query results.

• Estimated Cardinality: The optimizer relies on estimates based on available statistics like

cardinalities and the number of distinct values (NDV).

• Worst-Case Bounds: The optimizer assumes maximum possible join sizes (Cartesian product)

unless key constraints are present.

Table 4 presents the execution times for three queries on DuckDB and PostgreSQL under these

scenarios, along with the native plans. The results indicate that accurate cardinality leads to optimal

performance, while with estimated statistics, execution times improve significantly over the native

plans and can provide similar performance compared with the optimal estimation. On the other

hand, we also need some accuracy to ensure the performance, as if we only apply the worst-case

estimation, the performance can be much worse than our current selection or even native plans.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:23

0.2 0.4 0.6 0.8 1.0
(a) Selectivity

0.1

1.0

10.0

100.0

Ru
nn

in
g

Ti
m

e
(S

ec
)

0.1 1.0 10.0
(b) Scale

LSQB DuckDB native
TPCH DuckDB native
JOB DuckDB native

LSQB DuckDB Yannakakis +

TPCH DuckDB Yannakakis +

JOB DuckDB Yannakakis +

LSQB PostgreSQL native
TPCH PostgreSQL native
JOB PostgreSQL native

LSQB PostgreSQL Yannakakis +

TPCH PostgreSQL Yannakakis +

JOB PostgreSQL Yannakakis +

0.2 0.4 0.6 0.8 1.0
(a) Selectivity

0.1

1.0

10.0

100.0

Ru
nn

in
g

Ti
m

e
(S

ec
)

0.1 1.0 10.0
(b) Scale

LSQB DuckDB native
TPCH DuckDB native
JOB DuckDB native

LSQB DuckDB Yannakakis +

TPCH DuckDB Yannakakis +

JOB DuckDB Yannakakis +

LSQB PostgreSQL native
TPCH PostgreSQL native
JOB PostgreSQL native

LSQB PostgreSQL Yannakakis +

TPCH PostgreSQL Yannakakis +

JOB PostgreSQL Yannakakis +

(a) Selectivity

0.2 0.4 0.6 0.8 1.0
(a) Selectivity

0.1

1.0

10.0

100.0

Ru
nn

in
g

Ti
m

e
(S

ec
)

0.1 1.0 10.0
(b) Scale

LSQB DuckDB native
TPCH DuckDB native
JOB DuckDB native

LSQB DuckDB Yannakakis +

TPCH DuckDB Yannakakis +

JOB DuckDB Yannakakis +

LSQB PostgreSQL native
TPCH PostgreSQL native
JOB PostgreSQL native

LSQB PostgreSQL Yannakakis +

TPCH PostgreSQL Yannakakis +

JOB PostgreSQL Yannakakis +

(b) Scale

Fig. 11. Running times of different selectivity & scale.

12 4 8 16 32 48
Parallelism

1

10

100

1000

10000

Ru
nn

in
g

Ti
m

e
(S

ec
)

LSQB DuckDB native
LSQB DuckDB Yannakakis+

LSQB SparkSQL native
LSQB SparkSQL Yannakakis+

(a) LSQB-Q1

12 4 8 16 32 48
Parallelism

1.0

10.0

100.0
Ru

nn
in

g
Ti

m
e

(S
ec

)
SGPB DuckDB native
SGPB DuckDB Yannakakis+

SGPB SparkSQL native
SGPB SparkSQL Yannakakis+

(b) SGPB-Q1

Fig. 12. Running times under different parallelism.
Table 5. Optimizaiton time for different queries.

Query (s) DuckDB native DuckDB Yannakakis+ PostgreSQL native PostgreSQL Yannakakis+ #Tables #Attributes Opt-Time DuckDB Opt-Time

SNAP-q1a 15.10 8.19 46.96 37.64 3 6 0.133703232 0.0021

SNAP-q6 8.12 2.29 146.01 46.69 5 6 0.236415863 0.0014

LSQB-q1 6.27 0.97 376.31 85.34 10 7 0.065845966 0.0087

LSQB-q5 10.37 7.47 153.74 151.53 3 4 0.087508917 0.0017

TPCH-q3 5.32 5.07 79.99 68.39 3 8 0.071694851 0.0019

TPCH-q10 12.36 9.32 33.25 32.24 4 13 0.085761070 0.0027

TPCH-q19 5.72 5.68 52.94 51.89 2 9 0.074432135 0.0020

JOB-1a 3.66 3.21 7.34 6.72 5 8 0.075666189 0.0027

JOB-10c 23.59 23.49 131.33 92.96 7 10 0.172396183 0.0051

JOB-21a 40.93 40.01 56.36 36.78 9 13 0.080693007 0.0137

JOB-27c 41.10 40.76 51.22 36.65 12 17 0.086112976 0.0594

JOB-30a 61.14 35.86 60.24 49.86 14 21 0.096741199 0.0666

7.2.4 Robustness. From the experimental results, Yannakakis
+
consistently shows improvements

in the vast majority of queries tested and shows excellent robustness. This is mainly benefiting from

Yannakakis
+
’s optimization of the number of semi-joins. In most queries, only one round or even

no semi-join reduction is required. The rule-based optimizer also helps avoid unnecessary semi-

join reductions. Beyond semi-join reduction, aggregation pushdown also contributes to improved

performance. Furthermore, we also tested Yannakakis
+
under different selectivity and data scales

to further illustrate its robustness along these dimensions:

Selectivity.We selected two queries and altered the predicate to change 𝐹 (the full join size). In

Figure 11(a), the horizontal axis values represent the percentage of output value (size) compared

with output value (size) without a predicate. It can be observed that as the output size increases,

the advantages of the rewriter increase compared to the original query execution.

Scale.We selected five settings for LSQB: 0.1, 1, 3, 10, and 30. For JOB, we chose five scales with

equal intervals from 10 to 50. The curves in Figure 11(b) show that as the scale increases, the

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

235:24 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

running time generally increases proportionally, and the larger the scale, the better the execution

performance of our rewrite.

Parallel Query Processing. Our approach is pure relational, which offers the significant benefit

of seamless adoption in other computing scenarios, such as parallel processing. We conducted an

experiment where we varied the number of threads utilized by each DBMS and re-executed a set

of specific queries, with LSQB-Q1 selected in Figure 12(a) and SGPB-Q1 in Figure 12(b). From the

experimental results, our new query plan also shows improvement with additional threads, which

is similar to that of the native query plan, indicating great parallelization of our new plan.

Optimization Time. Finally, it is worth mentioning that the optimization overhead is relatively

small compared to the total query execution time. We selected representative 12 queries from

the four benchmarks to investigate the relationship between optimization time and the number

of tables and attributes within the query. As seen from Table 5, the optimization time is mostly

kept within 100ms, which is negligible compared to the query execution time. This favorable

outcome is partially attributed to the introduction of a hint mechanism within our system. When

the optimization time reaches a certain threshold, we leverage the existing plans from the DBMS

to assist our estimator. We do observe that there is a performance gap between the optimization

time of Yannakakis
+
and that of DuckDB. However, this gap is well offset by the performance

gains in the query execution time. Furthermore, we believe this gap can be significantly reduced if

we integrate Yannakakis
+
within the database kernel—recall that the current implementation of

our optimizer is outside the engine, thus incurring quite some overhead (in exchange for better

compatibility with different engines).

8 Conclusion and Future Work

In this work, we introduce Yannakakis
+
, an improved version of the original Yannakakis algorithm.

This new version not only maintains the theoretical guarantees but is also highly efficient in

practice. The experimental results suggest that Yannakakis
+
can not only achieve order-of-latitude

improvements on specific queries while avoiding regressions on other queries.

Our current implementation of Yannakakis
+
follows a rewrite-based approach to showcase its

applicability across a wide range of database and data processing systems (row-based vs column-

based, centralized vs distributed). The next natural step is to integrate it into an SQL engine,

which could further improve its performance. For example, we can generate a single physical plan

instead of issuing multiple SQL statements, reduce the communication overhead between system

components, and eliminate repeated parsing, plan generation, and optimization. Beyond these

direct advantages, combining Yannakakis
+
with the database engine offers further opportunities

for optimization: (1) Note that our use of semijoin is “soft”, i.e., it is alright to leave a small number

of dangling tuples unremoved. So this can be using Bloom filters, which are much more efficient

than using the existing semi-join operator. (2) Implementing Yannakakis
+
inside database engines

enables access to more sophisticated database statistics, potentially improving the cost-based

optimizer with tailored-made CE/CM. (3) The bottleneck of the optimization time in Yannakakis
+
is

running GYO and GHD to enumerate all possible query plans. By integrating Yannakakis
+
within

database engines, it is possible to reduce redundant plan enumeration through the native database

optimizer, which is especially useful for large queries with hundreds of relations or attributes.

These enhancements are expected to boost Yannakakis
+
’s performance and make it a more robust

solution for advanced query processing scenarios.

References
[1] DuckDB. https://duckdb.org/.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

https://duckdb.org/

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:25

[2] IMDB. http://www.imdb.com/.

[3] PostgreSQL. https://www.postgre.org/.

[4] SNAP. https://snap.stanford.edu/snap/.

[5] SparkSQL. https://spark.apache.org/sql/.

[6] TPC-H. https://www.tpc.org/tpch/.

[7] Yannakakis
+
: Practical Acyclic Query Evaluation with Theoretical Guarantees, Code Repository. https://github.com/

hkustDB/Yannakakis-Plus.

[8] Christopher R. Aberger, Andrew Lamb, Susan Tu, Andres Nötzli, Kunle Olukotun, and Christopher Ré. 2017. Empty-

Headed: A Relational Engine for Graph Processing. ACM Trans. Database Syst. 42, 4, Article 20 (Oct. 2017), 44 pages.
https://doi.org/10.1145/3129246

[9] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases. Addison-Wesley Longman Publishing

Co., Inc.

[10] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. 2016. FAQ: Questions Asked Frequently. In Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (San Francisco, California, USA) (PODS
’16). Association for Computing Machinery, New York, NY, USA, 13–28. https://doi.org/10.1145/2902251.2902280

[11] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2017. What Do Shannon-Type Inequalities, Submodular Width,

and Disjunctive Datalog Have to Do with One Another?. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (Chicago, Illinois, USA) (PODS ’17). Association for Computing Machinery,

New York, NY, USA, 429–444. https://doi.org/10.1145/3034786.3056105

[12] Jayadev Acharya, Ilias Diakonikolas, ChinmayHegde, Jerry Zheng Li, and Ludwig Schmidt. 2015. Fast and Near-Optimal

Algorithms for Approximating Distributions by Histograms. In Proceedings of the 34th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (Melbourne, Victoria, Australia) (PODS ’15). Association for Computing

Machinery, New York, NY, USA, 249–263. https://doi.org/10.1145/2745754.2745772

[13] Renzo Angles, János Benjamin Antal, Alex Averbuch, Peter A. Boncz, Orri Erling, Andrey Gubichev, Vlad Haprian,

Moritz Kaufmann, Josep-Lluís Larriba-Pey, Norbert Martínez-Bazan, József Marton, Marcus Paradies, Minh-Duc Pham,

Arnau Prat-Pérez, Mirko Spasic, Benjamin A. Steer, Gábor Szárnyas, and Jack Waudby. 2020. The LDBC Social Network

Benchmark. CoRR abs/2001.02299 (2020). arXiv:2001.02299 http://arxiv.org/abs/2001.02299

[14] Albert Atserias, Martin Grohe, and Dániel Marx. 2008. Size Bounds and Query Plans for Relational Joins. In 2008 49th
Annual IEEE Symposium on Foundations of Computer Science. 739–748. https://doi.org/10.1109/FOCS.2008.43

[15] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic Conjunctive Queries and Constant Delay

Enumeration. In Computer Science Logic. Springer Berlin Heidelberg, Berlin, Heidelberg, 208–222.

[16] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. 1983. On the desirability of acyclic database schemes. JACM 30, 3

(1983), 479–513.

[17] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J. Mior, and Daniel Lemire. 2018. Apache Calcite: A

Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources. In Proceedings of the
2018 International Conference on Management of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing

Machinery, New York, NY, USA, 221–230. https://doi.org/10.1145/3183713.3190662

[18] Liese Bekkers, Frank Neven, Stijn Vansummeren, and Yisu RemyWang. 2024. Instance-Optimal Acyclic Join Processing

Without Regret: Engineering the Yannakakis Algorithm in Column Stores. arXiv preprint arXiv:2411.04042 (2024).
[19] Altan Birler, Alfons Kemper, and Thomas Neumann. 2024. Robust Join Processing with Diamond Hardened Joins. Proc.

VLDB Endow. 17, 11 (Aug. 2024), 3215–3228. https://doi.org/10.14778/3681954.3681995

[20] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic Cardinality Estimation: Tighter Upper Bounds for

Intermediate Join Cardinalities. In Proceedings of the 2019 International Conference on Management of Data (Amsterdam,

Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York, NY, USA, 18–35. https://doi.org/10.

1145/3299869.3319894

[21] Nofar Carmeli and Markus Kröll. 2021. On the Enumeration Complexity of Unions of Conjunctive Queries. ACM
Trans. Database Syst. 46, 2, Article 5 (may 2021), 41 pages. https://doi.org/10.1145/3450263

[22] Surajit Chaudhuri and Vivek R Narasayya. 1997. An efficient, cost-driven index selection tool for Microsoft SQL server.

In VLDB, Vol. 97. San Francisco, 146–155.

[23] Yu Chen and Ke Yi. 2017. Two-Level Sampling for Join Size Estimation. In Proceedings of the 2017 ACM International
Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery, New

York, NY, USA, 759–774. https://doi.org/10.1145/3035918.3035921

[24] David DeHaan and Frank Wm. Tompa. 2007. Optimal top-down join enumeration. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data (Beijing, China) (SIGMOD ’07). Association for Computing

Machinery, New York, NY, USA, 785–796. https://doi.org/10.1145/1247480.1247567

[25] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and Vivek R Narasayya. 2019. Ai meets ai:

Leveraging query executions to improve index recommendations. In Proceedings of the 2019 International Conference

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

http://www.imdb.com/
https://www.postgre.org/
 https://snap.stanford.edu/snap/
https://spark.apache.org/sql/
https://www.tpc.org/tpch/
https://github.com/hkustDB/Yannakakis-Plus
https://github.com/hkustDB/Yannakakis-Plus
https://doi.org/10.1145/3129246
https://doi.org/10.1145/2902251.2902280
https://doi.org/10.1145/3034786.3056105
https://doi.org/10.1145/2745754.2745772
https://arxiv.org/abs/2001.02299
http://arxiv.org/abs/2001.02299
https://doi.org/10.1109/FOCS.2008.43
https://doi.org/10.1145/3183713.3190662
https://doi.org/10.14778/3681954.3681995
https://doi.org/10.1145/3299869.3319894
https://doi.org/10.1145/3299869.3319894
https://doi.org/10.1145/3450263
https://doi.org/10.1145/3035918.3035921
https://doi.org/10.1145/1247480.1247567

235:26 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

on Management of Data. 1241–1258.
[26] R. Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. JACM 30, 3 (1983), 514–550.

[27] Pit Fender and Guido Moerkotte. 2013. Counter strike: generic top-down join enumeration for hypergraphs. Proc.
VLDB Endow. 6, 14 (Sept. 2013), 1822–1833. https://doi.org/10.14778/2556549.2556565

[28] Michael Freitag, Maximilian Bandle, Tobias Schmidt, Alfons Kemper, and Thomas Neumann. 2020. Adopting worst-case

optimal joins in relational database systems. Proc. VLDB Endow. 13, 12 (July 2020), 1891–1904. https://doi.org/10.

14778/3407790.3407797

[29] Georg Gottlob, Matthias Lanzinger, Davide Mario Longo, Cem Okulmus, Reinhard Pichler, and Alexander Selzer. 2023.

Structure-Guided Query Evaluation: Towards Bridging the Gap from Theory to Practice. arXiv preprint arXiv:2303.02723
(2023).

[30] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 1999. Hypertree Decompositions and Tractable Queries.

In Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (,
Philadelphia, Pennsylvania, USA,) (PODS ’99). Association for Computing Machinery, New York, NY, USA, 21–32.

https://doi.org/10.1145/303976.303979

[31] Georg Gottlob, Zoltán Miklós, and Thomas Schwentick. 2009. Generalized hypertree decompositions: NP-hardness

and tractable variants. J. ACM 56, 6, Article 30 (sep 2009), 32 pages. https://doi.org/10.1145/1568318.1568320

[32] MH Graham. 1980. On the universal relation. University of Toronto. Computer Systems Research Group.

[33] Martin Grohe and Dániel Marx. 2014. Constraint Solving via Fractional Edge Covers. ACM Trans. Algorithms 11, 1,
Article 4 (aug 2014), 20 pages. https://doi.org/10.1145/2636918

[34] Dimitrios Gunopulos, George Kollios, J. Tsotras, and Carlotta Domeniconi. 2005. Selectivity estimators for multidimen-

sional range queries over real attributes. 14, 2 (April 2005), 137–154. https://doi.org/10.1007/s00778-003-0090-4

[35] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano Stefani, and Vidhya Srinivasan.

2015. Amazon redshift and the case for simpler data warehouses. In Proceedings of the 2015 ACM SIGMOD international
conference on management of data. 1917–1923.

[36] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes. 1995. Sampling-Based Estimation of the Number of

Distinct Values of an Attribute. In Proceedings of the 21th International Conference on Very Large Data Bases (VLDB ’95).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 311–322.

[37] Stockinger K Heitz J. 2019. Join query optimization with deep reinforcement learning algorithms. CoRR abs/1911.11689

(2019). arXiv:1911.11689 [cs.DB]

[38] Brian Hentschel, Michael S Kester, and Stratos Idreos. 2018. Column sketches: A scan accelerator for rapid and robust

predicate evaluation. In Proceedings of the 2018 International Conference on Management of Data. 857–872.
[39] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten Binnig. 2020.

DeepDB: learn from data, not from queries! Proc. VLDB Endow. 13, 7 (March 2020), 992–1005. https://doi.org/10.14778/

3384345.3384349

[40] Xiao Hu and Qichen Wang. 2023. Computing the Difference of Conjunctive Queries Efficiently. Proc. ACM Manag.
Data 1, 2, Article 153 (jun 2023), 26 pages. https://doi.org/10.1145/3589298

[41] Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. 2017. The Dynamic Yannakakis Algorithm: Compact and

Efficient Query Processing Under Updates. In Proceedings of the 2017 ACM International Conference on Management of
Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA, 1259–1274.

https://doi.org/10.1145/3035918.3064027

[42] Manas R. Joglekar, Rohan Puttagunta, and Christopher Ré. 2016. AJAR: Aggregations and Joins over Annotated

Relations. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems
(San Francisco, California, USA) (PODS ’16). Association for Computing Machinery, New York, NY, USA, 91–106.

https://doi.org/10.1145/2902251.2902293

[43] Raghav Kaushik and Dan Suciu. 2009. Consistent histograms in the presence of distinct value counts. Proc. VLDB
Endow. 2, 1 (Aug. 2009), 850–861. https://doi.org/10.14778/1687627.1687723

[44] Harald Lang, Thomas Neumann, Alfons Kemper, and Peter Boncz. 2019. Performance-optimal filtering: Bloom overtakes

cuckoo at high throughput. Proceedings of the VLDB Endowment 12, 5 (2019), 502–515.
[45] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How good

are query optimizers, really? Proc. VLDB Endow. 9, 3 (nov 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[46] Jiexing Li, Arnd Christian König, Vivek Narasayya, and Surajit Chaudhuri. 2012. Robust estimation of resource

consumption for SQL queries using statistical techniques. Proc. VLDB Endow. 5, 11 (July 2012), 1555–1566. https:

//doi.org/10.14778/2350229.2350269

[47] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil,

and Nesime Tatbul. 2019. Neo: a learned query optimizer. Proc. VLDB Endow. 12, 11 (July 2019), 1705–1718. https:

//doi.org/10.14778/3342263.3342644

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

https://doi.org/10.14778/2556549.2556565
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.14778/3407790.3407797
https://doi.org/10.1145/303976.303979
https://doi.org/10.1145/1568318.1568320
https://doi.org/10.1145/2636918
https://doi.org/10.1007/s00778-003-0090-4
https://arxiv.org/abs/1911.11689
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.1145/3589298
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.1145/2902251.2902293
https://doi.org/10.14778/1687627.1687723
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2350229.2350269
https://doi.org/10.14778/2350229.2350269
https://doi.org/10.14778/3342263.3342644
https://doi.org/10.14778/3342263.3342644

Yannakakis+: Practical Acyclic Query Evaluation with Theoretical Guarantees 235:27

[48] RyanMarcus and Olga Papaemmanouil. 2018. Deep Reinforcement Learning for Join Order Enumeration. In Proceedings
of the First International Workshop on Exploiting Artificial Intelligence Techniques for Data Management (Houston, TX,
USA) (aiDM’18). Association for Computing Machinery, New York, NY, USA, Article 3, 4 pages. https://doi.org/10.

1145/3211954.3211957

[49] Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and Gábor Szárnyas. 2021. LSQB: a large-scale

subgraph query benchmark. In Proceedings of the 4th ACM SIGMOD Joint International Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network Data Analytics (NDA) (Virtual Event, China) (GRADES-NDA
’21). Association for Computing Machinery, New York, NY, USA, Article 8, 11 pages. https://doi.org/10.1145/3461837.

3464516

[50] Guido Moerkotte and Thomas Neumann. 2006. Analysis of two existing and one new dynamic programming algorithm

for the generation of optimal bushy join trees without cross products. In Proceedings of the 32nd International Conference
on Very Large Data Bases (Seoul, Korea) (VLDB ’06). VLDB Endowment, 930–941.

[51] Guido Moerkotte and Thomas Neumann. 2008. Dynamic programming strikes back. In Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data (Vancouver, Canada) (SIGMOD ’08). Association for

Computing Machinery, New York, NY, USA, 539–552. https://doi.org/10.1145/1376616.1376672

[52] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim Kraska, and Mohammad Alizadeh.

2021. Flow-loss: learning cardinality estimates that matter. Proc. VLDB Endow. 14, 11 (July 2021), 2019–2032. https:

//doi.org/10.14778/3476249.3476259

[53] Parimarjan Negi, Ziniu Wu, Andreas Kipf, Nesime Tatbul, Ryan Marcus, Sam Madden, Tim Kraska, and Mohammad

Alizadeh. 2023. Robust Query Driven Cardinality Estimation under Changing Workloads. Proc. VLDB Endow. 16, 6
(Feb. 2023), 1520–1533. https://doi.org/10.14778/3583140.3583164

[54] Thomas Neumann. 2024. Closing the Gap between Theory and Practice in Query Optimization. In Companion of
the 43rd Symposium on Principles of Database Systems (Santiago AA, Chile) (PODS ’24). Association for Computing

Machinery, New York, NY, USA, 4. https://doi.org/10.1145/3635138.3654765

[55] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-Case Optimal Join Algorithms. J. ACM 65, 3,

Article 16 (mar 2018), 40 pages. https://doi.org/10.1145/3180143

[56] Viswanath Poosala, Peter J Haas, Yannis E Ioannidis, and Eugene J Shekita. 1996. Improved histograms for selectivity

estimation of range predicates. ACM Sigmod Record 25, 2 (1996), 294–305.

[57] RelationalAI. Accessed: 01.10.2024. Worst-case Optimal Join Algorithms. https://relational.ai/resources/worst-case-

optimal-join-algorithms

[58] Florin Rusu and Alin Dobra. 2008. Sketches for size of join estimation. ACM Trans. Database Syst. 33, 3, Article 15
(Sept. 2008), 46 pages. https://doi.org/10.1145/1386118.1386121

[59] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. 1979. Access path selection

in a relational database management system. In Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data (Boston, Massachusetts) (SIGMOD ’79). Association for Computing Machinery, New York, NY,

USA, 23–34. https://doi.org/10.1145/582095.582099

[60] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020. Cost Models for Big Data Query

Processing: Learning, Retrofitting, and Our Findings. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,

USA, 99–113. https://doi.org/10.1145/3318464.3380584

[61] Arun Swami and K. Bernhard Schiefer. 1994. On the estimation of join result sizes. In Proceedings of the 4th International
Conference on Extending Database Technology: Advances in Database Technology (Cambridge, United Kingdom) (EDBT
’94). Springer-Verlag, Berlin, Heidelberg, 287–300.

[62] Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. 2013. Efficiently adapting graphical models for selectivity

estimation. The VLDB Journal 22, 1 (Feb. 2013), 3–27. https://doi.org/10.1007/s00778-012-0293-7

[63] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil P. Chakkappen. 2015. Join size estimation subject

to filter conditions. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1530–1541. https://doi.org/10.14778/2824032.2824051

[64] Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin. 2025. Yannakakis+: Practical Acyclic Query

Evaluation with Theoretical Guarantees. arXiv preprint (2025).
[65] Qichen Wang, Xiao Hu, Binyang Dai, and Ke Yi. 2023. Change Propagation Without Joins. Proc. VLDB Endow. 16, 5

(jan 2023), 1046–1058. https://doi.org/10.14778/3579075.3579080

[66] Qichen Wang, Qiyao Luo, and Yilei Wang. 2024. Relational Algorithms for Top-k Query Evaluation. Proc. ACM Manag.
Data 2, 3, Article 168 (may 2024), 27 pages. https://doi.org/10.1145/3654971

[67] Qichen Wang and Ke Yi. 2022. Conjunctive Queries with Comparisons. In Proceedings of the 2022 International
Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD ’22). Association for Computing Machinery, New

York, NY, USA, 108–121. https://doi.org/10.1145/3514221.3517830

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/3211954.3211957
https://doi.org/10.1145/3461837.3464516
https://doi.org/10.1145/3461837.3464516
https://doi.org/10.1145/1376616.1376672
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3476249.3476259
https://doi.org/10.14778/3583140.3583164
https://doi.org/10.1145/3635138.3654765
https://doi.org/10.1145/3180143
https://relational.ai/resources/worst-case-optimal-join-algorithms
https://relational.ai/resources/worst-case-optimal-join-algorithms
https://doi.org/10.1145/1386118.1386121
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/3318464.3380584
https://doi.org/10.1007/s00778-012-0293-7
https://doi.org/10.14778/2824032.2824051
https://doi.org/10.14778/3579075.3579080
https://doi.org/10.1145/3654971
https://doi.org/10.1145/3514221.3517830

235:28 Qichen Wang, Bingnan Chen, Binyang Dai, Ke Yi, Feifei Li, and Liang Lin

[68] Yilei Wang and Ke Yi. 2021. Secure Yannakakis: Join-Aggregate Queries over Private Data. In Proceedings of the 2021
International Conference on Management of Data (Virtual Event, China) (SIGMOD ’21). Association for Computing

Machinery, New York, NY, USA, 1969–1981. https://doi.org/10.1145/3448016.3452808

[69] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, and Sriram Rao. 2018. Towards a

learning optimizer for shared clouds. Proc. VLDB Endow. 12, 3 (Nov. 2018), 210–222. https://doi.org/10.14778/3291264.

3291267

[70] Wentao Wu, Jeffrey F. Naughton, and Harneet Singh. 2016. Sampling-Based Query Re-Optimization. In Proceedings of
the 2016 International Conference on Management of Data (San Francisco, California, USA) (SIGMOD ’16). Association
for Computing Machinery, New York, NY, USA, 1721–1736. https://doi.org/10.1145/2882903.2882914

[71] Yifei Yang, Hangdong Zhao, Xiangyao Yu, and Paraschos Koutris. 2024. Predicate Transfer: Efficient Pre-Filtering on

Multi-Join Queries. In 14th Conference on Innovative Data Systems Research, CIDR 2024, Chaminade, HI, USA, January
14-17, 2024. www.cidrdb.org. https://www.cidrdb.org/cidr2024/papers/p22-yang.pdf

[72] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In VLDB, Vol. 81. 82–94.
[73] Clement Tak Yu and Meral Z Ozsoyoglu. 1979. An algorithm for tree-query membership of a distributed query.

In COMPSAC 79. Proceedings. Computer Software and The IEEE Computer Society’s Third International Applications
Conference, 1979. IEEE, 306–312.

[74] Feng Yu, Wen-Chi Hou, Cheng Luo, Dunren Che, and Mengxia Zhu. 2013. CS2: a new database synopsis for query

estimation. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data (New York, New

York, USA) (SIGMOD ’13). Association for Computing Machinery, New York, NY, USA, 469–480. https://doi.org/10.

1145/2463676.2463701

[75] Junyi Zhao, Kai Su, Yifei Yang, Xiangyao Yu, Paraschos Koutris, and Huanchen Zhang. 2025. Debunking the Myth of

Join Ordering: Toward Robust SQL Analytics. In SIGMOD.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 235. Publication date: June 2025.

https://doi.org/10.1145/3448016.3452808
https://doi.org/10.14778/3291264.3291267
https://doi.org/10.14778/3291264.3291267
https://doi.org/10.1145/2882903.2882914
https://www.cidrdb.org/cidr2024/papers/p22-yang.pdf
https://doi.org/10.1145/2463676.2463701
https://doi.org/10.1145/2463676.2463701

	Abstract
	Acknowledgments
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Conjunctive Queries
	2.2 Classification of CQs
	2.3 The Yannakakis Algorithm

	3 Yannakakis+
	3.1 First-round computation
	3.2 Second-round computation

	4 General Queries
	4.1 Cyclic Queries
	4.2 Sub-queries, Unions, Differences, and Top-k

	5 Query Optimization
	5.1 Rule-Based Optimization
	5.2 Cost-Based Optimization

	6 System implementation
	7 Experimental Evaluation & Analysis
	7.1 Experimental Setup
	7.2 Results

	8 Conclusion and Future Work
	References

